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Abstract 

Object recognition has become an enormous area of study in the field of computer 

vision allowing for the automated detection of known objects. The applications of this 

technology are vast, and this thesis looked to examine the application of a well-known 

approach to object detection as a method of automated identification of cloud 

formations: Haar classification. Using this technology, an application was developed 

which attempted to identify clouds within an image. The purpose of the research was to 

investigate the feasibility of Haar classification as a tool which could be used by weather 

watchers and forecasters for producing updated weather forecasts. 
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Chapter 1: Introduction 

1.0 Introduction 

1.1 Problem 

1.2 Literature Review 

1.3 Objectives 

1.4 Rationale 

1.5 Research Questions 

1.6 Scope 

1.0 Introduction 

Current weather prediction models rely heavily on data captured from a variety of 

sources, including: satellites, radar, air craft, and various forms of ground based 

weather stations. This data is collected in a centralized location where it is then used to 

make weather and forecasting models.  

Satellite and radar imagery are very powerful tools employed by forecasters, but they 

suffer from very distinct reliability issues. For example: satellites can produce a large 

scale image of cloud cover, but fail to deliver an accurate image of what is happening 

within those clouds, especially in the lower levels of cloud formations[1]. Doppler radar 

is susceptible to interference which can lead to inaccurate results. 

To overcome these and many other issues, weather forecasters rely on weather 

watchers: people and groups who report ground based observations of weather events 

and conditions. Weather watchers gather data based on the current conditions and 

provide this data to forecasters and agencies (such as Environment Canada). With this 

data, forecasters are able to provide updated weather forecasts and issue weather 

related warnings and watches. 
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The goal of this thesis was to develop an automated ground based system for 

identifying cloud formations as a tool to potentially be used by weather watchers. This 

system uses captured images of the sky then uses pattern recognition to determine the 

type of clouds present in that image (if any such clouds are present). Such a system 

could be lightweight and fast enough for ease of use as well as portability. 

1.1 Problem 

Weather forecasting involves collecting data from various sources, such as Doppler 

radar, satellite imagery, wind speed and direction, and more. These forecasts provide a 

reliable means to predict weather patterns over a fairly large time period (Metro UK 

claimed that in 2014 they were able to provide a forecast for up to four days within some 

calculated error [2]). These forecasts, however, often cover large land masses (such as 

the City of Sault Ste. Marie or Algoma Manatoulin). As a weather system moves across 

these regions it can change (for example the severity of a thunderstorm can intensify, or 

rain can become freezing rain, and so on). Due to the ever this instability of natural 

weather events, weather forecasters have recruited weather watchers – people who 

collect data about weather activity in a region – which allows forecasters to produce 

updated regional forecasts. 

1.2 Literature Review 

Clouds and cloud formations have been known for a long time to be indicators of 

weather activity. Clouds are categorized by ten classifications called Genera. These ten 

Genera are subcategorized based on altitude of the clouds in the atmosphere (table 

1.2.1). 
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The use of technologies such as sky-imaging allows for capture of continuous cloud 

cover on a local scale. [1] 

Storm Spotters are invaluable resources in forecasting severe and non-severe weather 

events. Spotter Networks employ position based reporting which allows for real time 

tracking of such weather events. [3] 

 

Table 1.2.1 – Cloud classifications and associated precipitation [4] 

High Level (altitude > 6 Km) 

Cirrus – No 

precipitation   

 

Cirrocumulus – No 

precipitation 

 

Cirrostratus – No 

precipitation 

 

Middle Level (altitude 2.5 Km to 6 Km) 

Altocumulus – light showers

 

Altostratus – rain or 

snow

 

Nimbostratus – heavy rain 

or snow 
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Low Level (altitude < 2.5 Km) 

Stratocumulus - drizzle

 

Stratus - drizzle

 

Cumulus – showers or 

snow

 

Cumulonimbus – shower or snow. Also potential for thunder/ lightning and squalls 

 

 

Weather prediction models have grown to the point where forecasts can be made in the 

short term on small scales, to seasonal forecasts over much larger regions. As 

computers and numerical weather models continue to evolve, it is possible that a limit 

will be reached of what these computers can and cannot process with respect to 

weather prediction. [5] 

Storm prediction centres in Canada each cover roughly 1 million square kilometres [6]. 

With an estimated 500 volunteer weather watchers in Canada [6] this places 

responsibility for a large area on a small number of people. 

NIMROD is a system that was developed in in the 1990's that was used to generate 

forecasts on a very short term [7]. The NIMROD System was ground based which 
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collected information on several different metrics: including precipitation, general cloud 

cover, and visibility. 

Automated cloud classification is a technique by which an image is analyzed and it is 

determined whether or not that image contains clouds, and what type of clouds 

formations they are. 

Haar like features (figure 1.2.1) were initially described in 1998 as a method of feature 

extraction of images in facial detection software based on Haar wavelets [8]. This 

research was further developed and Haar like features were formally defined in 2001 

[9]. In 2002 more features were added [10]. These features are designed as an abstract 

view of common facial features (figure 1.2.2). 

 

Figure 1.2.1 – Collection of Haar like features [11] 
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Figure 1.2.2 – Haar like features overlaying a face [12] 

These features can be defined by a convolution matrix (kernel) (figure 1.2.3), where 

features of the image are determine by the convolution with the kernel [13]. Figure 1.2.4 

depicts how such a feature may look overlaying a cloud where the light region of the 

feature corresponds to a region of the cloud; the dark region of the feature corresponds 

to a region outside of the cloud (in this case, the sky in the background). 

 

Figure 1.2.3 – examples of convolution matrices 
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Figure 1.2.4 – a cloud with a Haar like feature overlaid 

1.3 Objectives 

There were two main objectives for this thesis: 

i. To research existing systems of similar nature or otherwise relevant to the area of 

study, and 

ii. To determine if Haar-like features can be used to identify and classify cloud 

formations 

1.4 Rationale 

The reason that I chose to research this topic is that I am interested in approaches used 

in weather research and forecasting. Through this research, I hope to find new ways to 

track weather events which will hopefully aid in a community’s ability to prepare for 

these events. 
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I have chosen to use a machine learning approach because it offers a solution that is 

largely automated with the ability to recognize cloud formations that it is unfamiliar with 

using minimal human interaction. Haar like features were selected because the 

technique of using these features in pattern recognition has grown to incredible heights 

over the past decade. This technique has, in previous research covering various 

applications, proven to be very reliable and fast. 

As previously discussed, weather watchers play a pivotal role in producing updated 

weather forecasts. The resultant software developed for this thesis was intended to be 

fast, which is achieved through the use of Haar classifiers, and lightweight. The 

software used multiple libraries for preparing the images and training the classifier, as I 

will discuss in more depth later in this paper, but the software for actually detecting and 

classifying clouds is dependent on a smaller set off tools which require very little effort 

to set up. This was intended as a quick and reliable method for weather watchers to 

gather more data on current weather events. 

1.5 Research Questions 

What are the limitations of Haar classifiers? 

Can a classifier based on Haar-like features be used to identify and classify cloud 

formations? 

Is such an application beneficial in any way? 

1.6 Scope 

This thesis was concerned only with the research and development of an application for 

ground based analysis of clouds. The focus of this research was on the ability to identify 

and classify these clouds. 
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Since the focus of this research was on identification of clouds formations with a focus 

on the application in a weather reporting system, some other important information is 

not being gathered, but could potentially be added in future iterations of this project. For 

example: real time temperature monitoring, and wind speed and direction. 

The research was also focused primarily on identifying clouds that produce weather 

events (such as rain, thunderstorms, and blizzards). In particular mid to low level clouds 

are often associated with precipitation, with Cumulonimbus being the primary focus of 

this research. 

This research relied on existing technologies for pattern recognition, such as the 

classifiers provided by the OpenCV library. Though the techniques were researched, 

the focus of this research did not include the low level details about how those 

technologies worked, nor how they are implemented. 
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Chapter 2: Methods 

2.0 Introduction 

2.1 Methodology 

2.2 Materials 

    2.2.1 Software 

    2.2.2 Hardware 

    2.2.3 Images 

    2.2.4 Classifier 

2.3 Procedure 

 

2.0 Introduction 

This chapter will introduce the software development methodology used in this thesis, 

the staged delivery model, providing an overview of that methodology and how it was 

applied in this research. Details about what software and hardware was used will be 

covered along with how those tools were employed. The final section of this chapter will 

cover how the software was implemented. 

2.1 Methodology 

The software was developed following a staged delivery model (figure 2.1.1). This 

began with the initial concept for the software – a system for identifying could types. 

This system's intended purpose was to use a machine learning approach, involving 

image processing and pattern recognition, to capture “live” images of clouds and 

determine what type of cloud was being observed. 
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Figure 2.1.1 – Staged delivery model [14] 

The next phase of the model was analyzing requirements. The initial requirements 

were: train the system using known pattern recognition techniques based on a set of 

categorized images (reference images), capture images of clouds and determine what 

type those clouds were. It was determined that, due to time constraints, collecting 

enough reference images to train the classifier would not be feasible, since this process 

can require hundreds or even thousands of images with and without cloud formations in 

them. Through this analysis an alternative approach was considered: extract still image 

sequences from time-lapse videos of clouds. 

The final stages of this methodology were to create detailed designs and implement, 

debug, and test these designs. There were two iterations of this stage: the goal of the 
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first was to produce a simple prototype which would be able to identify clouds in images, 

but not classify those clouds by type. The second iteration was a refinement of the 

prototype which would be able to classify clouds based on type. 

2.2 Materials 

2.2.1 Software:  

The application was developed use the Python language (version 2.7) using the Open 

Computer Vision Library (OpenCV) and the Python Image Library (PIL) – which has 

since been superseded by a “fork” of the original PIL source, called Pillow. 

Images were taken from time lapse videos, exported to image sequences using Adobe 

After Effects and Adobe Media Encoder.  

2.2.1.a About OpenCV 

OpenCV (http://opencv.org/) is an open source computer vision library with binding in 

several languages including C++ and Python. OpenCV was used throughout this 

research for the following tasks:  

- Generating samples 

- Training the classifiers 

- Opening the classifiers and test images and detecting objects in the test images 

2.2.1.b About Python Imaging Library 

Python Imaging Library (http://www.pythonware.com/products/pil/) is an open source 

library for Python which provides the ability to manipulate images (such as by altering 

individual pixels). PIL was used in this research to convert images to greyscale (from 

RGBA). 

http://www.pythonware.com/products/pil/
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2.2.2 Hardware: 

Development and testing of the software was completed on two desktop machines: one 

machine was used for creating samples and generating the classifier, and another 

machine was used to gather test data (this will be discussed later in this chapter as well 

as in the following chapters on the results and discussion). The technical specifications 

are outlined below: 

Desktop 1 – used create samples and train classifier: 

 Operating System – Ubuntu Server 15.10 

 CPU – Intel Core 2 6300 @ 1.86 GHz 

 Memory – 2 GB 

Desktop 2 – used to gather test data: 

 Operating System – Ubuntu 15.10 

 CPU – Intel Core i7-3770 @ 3.40 GHz 

 Memory – 8 GB 

2.2.3 Classifier:  

The goal of this thesis was to investigate the use of classifiers based on Haar-like 

features. The topic of such classifiers themselves has been researched to great extents 

and many tools exist for generating the classifier. Thus, this research used the utilities 

provided by the OpenCV library, namely the opencv_createsamples and the 

opencv_traincascade utilities. 
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2.2.4 Images: 

In order to train the classifier two sets of images were required: a set of “positive 

images” which were of the object which was to be identified by the classifier - clouds, 

and a set of negative images which contained anything but the object which was to be 

identified. These two sets needed to be very large (Leindhart et Al describe using a total 

of approximately 8000 images [5000 positive; 3000 negative] in training a Haar classifier 

for use in facial detection [9]). Due to time constraints images used in this research 

were taken from time lapse video of clouds. This made it possible to get thousands of 

images using only a couple of minutes of video. Initial tests of training the classifier 

based on images taken from a small very number of videos yielded inaccurate results, 

therefore images were taken from a larger sample of videos. This is discussed in further 

detail later in the paper. 

Once the training was completed another set of images were used to test the resultant 

classifier. This second image set contained both positive and negative images. This was 

intended as a way to better measure potential misclassification by the classifier. 

2.3 Procedure 

The software was broken into two iterations: a prototype which would simply determine 

if there was a cloud in an image, and a refined version of the prototype which would be 

able to classify any Cumulonimbus clouds found in images. 

Before implementing any of the software, several tasks needed to be completed as a 

prerequisite (figure 2.1.1). These steps were automated through the use of several 

python scripts:  
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Figure 2.1.1 – A general overview of the procedures followed and the artifacts that were created and 
where they were used (note: images are omitted). 

 

i) Locating and organizing images. Two sets of images are needed in order to train the 

classifier: a set of “positive” images which contain clouds, and a set of “negative” 

images that do not have clouds in them. These image sets were separated into two 

directories for further processing. 

Images were taken from online time-lapse videos of cloud cover. This provided several 

benefits: a short video could produce a large image set (for example: a 60 second video 

at 30 frames per second could yield 900 images), the clouds were constantly changing 

shape and size over the duration of the video which provided a decent amount of 

variability to the image set. This was accomplished with Adobe After Effects and Adobe 

Media Encoder. First the videos were imported into After Effects then cropped down to 

eliminate as much of the background scenery as possible. The After Effects project was 

then imported into Media Encoder and exported to image sequences. 

ii) Generate lists of the positive and negative images. To make the following processes 

easier, two files containing a list of the positive and negative images was created. 
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Due to time constraints and the computationally complex task of the following stages, a 

selection of 406 positive images and 822 negative images were used for training both 

for both the initial prototype and final software  

iii) Convert to greyscale. Each of the positive and negative images needed to be 

converted to greyscale (from colour). 

iv) Create samples from the positive and negative image sets. First text files were 

generated for both the positive and negative image sets. These text files simply 

contained a list of file names of the corresponding images (negatives.txt contained a list 

of the file names for all of the negative images). These text files were used by a Python 

script which called the opencv_createsamples (see appendix B.1) utility for each of the 

images in the positives file. The output of the create samples utility consisted of a 

“vector” file for each image, placed in a subdirectory. These vector files were then 

merged into a single vector file for use in the next stage. 

v) Generate the classifier from the samples. The opencv_traincascade utility was used 

which took in the directory containing the vector files from the previous step, the text file 

containing the negative image names, and several other parameters (see appendix 

B.2). 
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Chapter 3: Results 

3.0 Introduction 

3.1 Main findings 

 3.1.1 Cloud detection 

 3.1.2 Cloud identifier 

3.0 Introduction 

This chapter will present the results of testing the software. It will contain a brief 

overview of how the data was collected. It will also describe the raw data collected from 

the experiments and prepare the reader for the following chapter, Chapter 4: 

Discussion. 

3.1 Main Findings 

As mentioned previously, a set of images were selected for testing purpose and boxes 

bounding the clouds in the images were manually created (figure 3.1.1) and stored in 

text files. The software would run and create a box around each cloud it found in the 

image (figure 3.1.2) and write those boxes to a file using the same format as the files 

that were manually created. Testing was done in two phases – one for each iteration of 

the software (detecting clouds and identifying Cumulonimbus clouds) 

 



25 
 

 

Figure 3.1.1 – image of a cloud with the expected bounding box outlined 

 

 

Figure 3.1.2 – image of a cloud with the detected “clouds” outlined 
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3.1.1 Cloud detection 

Testing of the initial prototype used seventeen test images: twelve containing clouds 

and five which did not have clouds present in the image. Table 3.1.1 lists the expected 

and actual results for each image (see Appendix C: Raw Data for complete results) and 

figure 3.1.1 shows the same comparison for just the positive test images. 

Table 3.1.1 – number of clouds expected to be detected vs cloud actually detected 

Image name Expected #of clouds to detect #of clouds detected 

Neg1.jpg 0 35 

Neg2.jpg 0 15 

Neg3.jpg 0 7 

Neg4.jpg 0 16 

Neg5.jpg 0 8 

Pos1.jpg 1 68 

Pos2.jpg 2 31 

Pos3.jpg 6 2 

Pos4.jpg 3 9 

Pos5.jpg 1 12 

Pos6.jpg 1 25 
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Pos7.jpg 1 20 

Pos8.jpg 1 16 

Pos9.jpg 1 56 

Pos10.jpg 1 25 

Pos11.jpg 1 45 

Pos12.jpg 1 17 

 

 

Figure 3.1.3 – number of clouds detected vs actual number of clouds in positive images 

3.1.2 Cloud Identifier 

Testing this iteration of the software used eighteen test images: ten containing 

Cumulonimbus clouds, eight which were a mixture of no clouds and clouds that are not 
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Cumulonimbus. For all test images, no clouds were identified. This will be discussed in 

the following chapter. 
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Chapter 4: Discussion 

4.0 Introduction 

4.1 Discussion of Results 

4.2 Conclusions 

4.3 Future Work 

4.0 Introduction 

This chapter will discuss in detail the results outlined in the previous chapter as well as 

summarize the research completed and provide insight into future research involving 

this topic. It will cover the areas in which the software failed and potential reasons for 

that failure.  

4.1 Discussion of Results 

It is quite clear that the results are not favourable. The first iteration of the software 

detected clouds in images that did not contain clouds which clearly proves it did not 

function properly. However, it was able to pick out parts of clouds in images that had 

fairly distinct features (this can be observed in figure 3.1.2; the things that it detected as 

being clouds are either actual parts of the cloud [primarily the edges] or the shadow of 

the cloud on the roof of the building), I believe that the failure of this can be attributed to 

the limited size and diversity of the training data. 

The second iteration, I believe, failed outright for the same reasons that the initial 

iteration had difficulties. Though the number of positive and negative images used to 

train both was identical, it is my belief that the positive training set was not diverse 

enough. 

Another issue that I believe to have contributed to these poor results is that some of the 
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training images contained multiple distinct clouds. This could potentially lead to training 

the classifier to view multiple clouds as a single entity (figure 4.2.1) 

 

Figure 4.2.1 – a single image which was used in training depicting multiple clouds which could 
be treated as a single cloud during the training process 

 

4.2 Conclusions 

This research has explored an approach to automated cloud classification which 

employed a well-known object detection technique. Third party libraries (OpenCV and 

PIL) were used as a way to efficiently prepare the training data. 

The project concluded with very discouraging results, but the implications are not so 

bleak. The first iteration yielded incredibly inaccurate and, in some cases, completely 

incorrect detection. This does not necessarily mean that Haar like classification is not a 

feasible approach to cloud identification. As I have mentioned previously, though the 
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results are inaccurate they tended to be consistent in the misidentification and often 

identifying certain features as opposed to the entire cloud. 

4.3 Future Work 

The first and probably most obvious direction that could be followed from this research 

is to use a much larger data set containing a much wider diversity of the training 

images. This could potentially include testing whether or not including images of other 

cloud types as negatives for a certain cloud (for example: if training was being done to 

identify cumulonimbus clouds images of different types of clouds [such as cumulus or 

stratus] could be used as negative samples for that training) could have an impact on 

the reliability of the training. 

As discussed, I do strongly believe that the issue of “bad” images impacted results. This 

could provide an area of research into whether or not this truly is an issue, and if so, to 

what extent.  
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Appendix A - Source Code 

#gen_pos_neg.py 

#Generate the positive and negative lists 

import os 

img_dir = '../../thesis_images/' 

pos_dir = img_dir + 'clouds/' 

neg_dir = img_dir + 'background_images/' 

pos_file = "positives.txt" 

neg_file = "negatives.txt" 

pos = open(pos_file, 'w') 

neg = open(neg_file, 'w') 

dirs = os.listdir(pos_dir) 

for i in dirs: 

 imgs_dir = pos_dir + i 

 imgs = os.listdir(imgs_dir); 

 offset = len(imgs) / 10 

 for j in range(len(imgs)): 

  #print(j) 

  if j % offset == 0: 

   pos.write(imgs_dir + '/' + imgs[j] + '\n') 

dirs = os.listdir(neg_dir) 

for i in dirs: 

 imgs_dir = neg_dir + i 

 imgs = os.listdir(imgs_dir); 

 offset = len(imgs) / 10 

 for j in range(len(imgs)): 

  #print(j) 
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  if j % offset == 0: 

   neg.write(imgs_dir + '/' + imgs[j] + '\n') 

# greyscale.py 

# convert images to greyscale and generate list of greyscale 

# images 

 

import os 

import Image 

pos = open("positives_gs_cropped.txt", "w") 

sequences = "./image sequences" 

gs = "./greyscale_images" 

image_dirs = os.listdir(sequences) 

count = 0 

for i in image_dirs:  # i is a subdirctory of dir 

 files = os.listdir(sequences + "/" + i) # files is the list of files in dir/i 

 if os.path.exists(gs + "/" + i) == False: 

  os.mkdir(gs + "/" + i) 

 for j in files:  # j is a .png file in dir/i 

  img = Image.open(sequences + "/" + i + "/" + j).convert("LA") 

  img.save(gs + "/" + i + "/" + j) 

  #pos.write(j + "\n") 

  #pos.write(dir + "/" + i + "/" + j + "\n") 

 tmp = 0 

dir = "./img/negatives" 

negs = open("negatives_gs_cropped.txt", "w") 

file = os.listdir(dir) 

for i in file: 
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 negs.write(dir + "/" + i + "\n") 

# generate_vec.py 

# generate positive samples for each 

# positive image 

import subprocess 

import string 

pos = "./gs_positives_cumulo.txt" 

#neg = './gs_negatives.txt' 

neg = "test_negatives.txt" 

file = open(pos, "r") 

imgs = file.readlines() 

count = 0; 

dir = "../vecs/" 

#w = "18" 

#h = "10" 

w = 16 

h = 9 

# Just clouds 

#w = 16 

#h = 12 

for i in imgs: 

 img = string.strip(i, "\n") 

 subprocess.call(["opencv_createsamples", "-img", img, "-info", pos, "-vec", (dir + 
"out" + str(count) + ".vec" ), "-bg", neg, "-num", "405", "-w", str(w), "-h", str(h)]); 

 count = count + 1 

import cv2 

import os 

def gen_results(img, casc): 
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 image = cv2.imread(img) 

 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) 

 # Detect clouds in the image 

 clouds = casc.detectMultiScale( 

     gray, 

     scaleFactor=2.0, 

     flags = cv2.cv.CV_HAAR_SCALE_IMAGE 

 ) 

 fname = os.path.basename(img) 

 name, ext = os.path.splitext(fname) 

 out_file = open("results/actual/" + name + ".txt", 'w') 

 num_clouds = len(clouds) 

 out_file.write(str(num_clouds) + "\n") 

 # Draw a rectangle around the clouds 

 for (x, y, w, h) in clouds: 

  cv2.rectangle(image, (x, y), (x+w, y+h), (0, 255, 0), 2) 

  # write rectangles to .csv file 

  out_file.write(str(x) + "\n") 

  out_file.write(str(y) + "\n") 

  out_file.write("0 0\n") 

  out_file.write(str(w) + " 0\n") 

  out_file.write("0 " + str(h) + "\n") 

  out_file.write(str(w) + " " + str(h) + "\n") 

 cv2.imshow("Clouds found", image) 

 cv2.waitKey(0) 

cascPath = "cloud_cascade.xml" 

# Create the haar cascade 
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cloudCascade = cv2.CascadeClassifier(cascPath) 

test_images = "test_images.txt" 

test_images_file = open(test_images, 'r') 

imgs = test_images_file.readlines() 

gen_results("test_images/VickieIncus.jpg", cloudCascade) 
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Appendix B – Other information 

B.1 opencv_createsamples parameters [15] 

The below table outlines the parameters that the opencv_createsamples 

utility will accept: 

Parameter Description 

-vec <vfname> Output file for the positive samples 

-img <ifname> Source image (positive image) 

-bg <bgfname> File containing list of negative images 

-num <numsamples> Number of samples to generate 

-bgcolor <bgcolor> Background color of positive images. Background 

color is considered transparent 

-bgthresh <bgthresh> Threshold for background color of positive images 

-inv Invert colors of images 

-randinv Randomly invert colors of images 

-maxidev <maxdeviation> Maximum deviation of foreground pixel intensity 

-maxxangle <max_x_rot> Maximum x rotation applied to input image 

-maxyangle <max_y_rot> Maximum x rotation applied to input image 

-maxxangle <max_z_rot> Maximum x rotation applied to input image 
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-show Display samples 

-w Width of output sample 

-h Height of output sample 

-pngoutput Generate collection of .png files and annotations 

 

B.2 opencv_traincascade parameters [15] 

Parameter Description 

-data <casc_dir> Output directory for trained classifier 

-vec <vec_file> Positive samples (.vec file) 

-bg <bg_filename> List of background files (negative samples) 

-numPos <num_positive> Number of positive samples 

-numNeg <num_negative> Number of negative samples 

-numStages <num_of_stages> Number of stages to be trained. 

-precalcValBufSize <buffer_size> Feature value buffer size 

-precalcIdxBufSize <idxs_size> Feature index buffer size 

-baseFormatSave  

-acceptanceRatioBreakValue Precision of model 
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-stageType <BOOST> Stage type (only BOOST is supported) 

-featureType <{HAAR, LBP}> Feature type (Haar like, Local Binary Patterns) 

-w <sample_width> Width of training samples 

-h <sample_height> Height of training samples 

-bt <{DAB, RAB, LB, GAB}> Boosted classifier type (Discrete AdaBoost, Real 

AdaBoost, LogitBoost, Gentle AdaBoost [default]) 

-minHitRate <hit_rate> Minimum hit rate for each stage of classification 

-maxFalseAlarmRate <alarm_rate>

  

Maximum false alarm rate for each stage of 

classification 

-weightTrimRate <trim_rate> Trim weight 

-maxDepth <tree_depth> Maximum depth of weak tree 

-maxWeakCount <tree_count> Maximum count of weak trees for each stage of 

classification 

-mode <{BASIC, CORE, ALL}> Type of Haar features to use in training. Default: 

BASIC 
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Appendix C: Test images 

Below are the images used in testing the software. Posn.jpg are “positive” images (that 

is to say they have clouds), negn.jpg are negative images (which is to say that they do 

not have clouds in them)  

C.1 Cloud detection 

pos1.jpg 
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pos2.jpg 
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pos3.jpg 

 

pos4.jpg 
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pos5.jpg 
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pos6.jpg 

 

 

 

 

 

 

 



47 
 

pos7.jpg 
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pos8.jpg 
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pos9.jpg 
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pos10.jpg 
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pos11.jpg
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pos12.jpg
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neg1.jpg
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neg2.jpg
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neg3.jpg
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neg4.jpg
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neg5.jpg
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C.2 Cloud Identification 

pos1.png
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pos2.png
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pos3.png

 

pos4.jpg 
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pos5.jpg
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pos6.jpg
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pos7.jpg

 

pos8.jpg
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pos9.jpg

 



65 
 

pos10.jpg
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neg1.jpg
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neg2.jpg

 



68 
 

neg3.jpg

 



69 
 

neg4.jpg
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neg5.jpg
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neg6.jpg
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neg7.jpg
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neg8.jpg
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Appendix D: Raw data 

The following is the output from the test results. Each entry begins with a file name (files 

containing “neg” correspond to images that do not contain clouds; files with “pos” 

correspond to images that contained clouds). The file name is followed by a line 

indication how many clouds were detected in that image. The lines following that 

correspond to the coordinates of the detected clouds in the following format: 

xoff – x offset from the top left of the image to the top left of the detected cloud 

yoff – y offset from the top left of the image to the top left of the detected cloud 

then four (x,y) pairs (on a single line, delimited by commas) which correspond to the 

coordinates of the top left, top right, bottom left, bottom right bound of the detected 

cloud (these coordinates are 0 based therefore the actual coordinate would be x + xoff, 

y + yoff). 

Cloud Detection – Expected results 

i_detect/pos/pos1.jpg 

1 

0 

0 

(0,0),(951,0),(0,396),(951,396) 

i_detect/pos/pos2.jpg 

2 

0 

0 

(0,0),(957,0),(0,437),(957,437) 

0 

436 

(0,0),(957,0),(0,100),(957,100) 

i_detect/pos/pos3.jpg 

6 

273 

0 

(0,0),(162,0),(0,242),(162,242) 

315 

241 

(0,0),(176,0),(0,233),(176,233) 

631 

246 
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(0,0),(295,0),(0,216),(295,216) 

168 

549 

(0,0),(51,0),(0,53),(51,53) 

780 

561 

(0,0),(177,0),(0,75),(177,75) 

390 

537 

(0,0),(116,0),(0,89),(116,89) 

i_detect/pos/pos4.jpg 

3 

267 

25 

(0,0),(690,0),(0,401),(690,401) 

180 

207 

(0,0),(96,0),(0,92),(96,92) 

156 

324 

(0,0),(102,0),(0,124),(102,124) 

i_detect/pos/pos5.jpg 

1 

96 

47 

(0,0),(782,0),(0,632),(782,632) 

i_detect/pos/pos6.jpg 

1 

0 

0 

(0,0),(957,0),(0,522),(957,522) 

i_detect/pos/pos7.jpg 

1 

0 

0 

(0,0),(957,0),(0,537),(957,537) 

i_detect/pos/pos8.jpg 

1 

0 

140 

(0,0),(957,0),(0,419),(957,419) 

i_detect/pos/pos9.jpg 

1 

0 

0 

(0,0),(957,0),(0,413),(957,413) 

i_detect/pos/pos10.jpg 

1 

288 

22 

(0,0),(669,,0),(0,554),(669,,554) 

i_detect/pos/pos11.jpg 

1 

0 
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0 

(0,0),(957,0),(0,466),(957,466) 

i_detect/pos/pos12.jpg 

1 

0 

22 

(0,0),(822,0),(0,473),(822,473) 

 

Cloud detection – Actual results 

i_detect/neg/neg1.jpg 

35 

270 

167 

(0,0),(36,0),(0,20),(36,20) 

87 

173 

(0,0),(72,0),(0,40),(72,40) 

150 

168 

(0,0),(72,0),(0,40),(72,40) 

189 

174 

(0,0),(72,0),(0,40),(72,40) 

328 

56 

(0,0),(72,0),(0,40),(72,40) 

260 

29 

(0,0),(72,0),(0,40),(72,40) 

15 

265 

(0,0),(72,0),(0,40),(72,40) 

629 

55 

(0,0),(72,0),(0,40),(72,40) 

326 

26 

(0,0),(72,0),(0,40),(72,40) 

506 

173 

(0,0),(72,0),(0,40),(72,40) 

213 

318 

(0,0),(72,0),(0,40),(72,40) 

507 

135 

(0,0),(72,0),(0,40),(72,40) 

536 

107 

(0,0),(72,0),(0,40),(72,40) 

67 
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129 

(0,0),(72,0),(0,40),(72,40) 

259 

180 

(0,0),(72,0),(0,40),(72,40) 

147 

128 

(0,0),(72,0),(0,40),(72,40) 

105 

133 

(0,0),(72,0),(0,40),(72,40) 

337 

394 

(0,0),(72,0),(0,40),(72,40) 

482 

384 

(0,0),(72,0),(0,40),(72,40) 

190 

82 

(0,0),(72,0),(0,40),(72,40) 

452 

134 

(0,0),(72,0),(0,40),(72,40) 

350 

342 

(0,0),(72,0),(0,40),(72,40) 

352 

186 

(0,0),(72,0),(0,40),(72,40) 

334 

142 

(0,0),(72,0),(0,40),(72,40) 

177 

137 

(0,0),(72,0),(0,40),(72,40) 

391 

145 

(0,0),(72,0),(0,40),(72,40) 

337 

102 

(0,0),(72,0),(0,40),(72,40) 

308 

103 

(0,0),(72,0),(0,40),(72,40) 

551 

218 

(0,0),(72,0),(0,40),(72,40) 

51 

236 

(0,0),(72,0),(0,40),(72,40) 

415 

215 

(0,0),(144,0),(0,80),(144,80) 

250 
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18 

(0,0),(144,0),(0,80),(144,80) 

61 

36 

(0,0),(144,0),(0,80),(144,80) 

433 

116 

(0,0),(144,0),(0,80),(144,80) 

484 

146 

(0,0),(144,0),(0,80),(144,80) 

 

i_detect/neg/neg2.jpg 

15 

137 

312 

(0,0),(72,0),(0,40),(72,40) 

101 

317 

(0,0),(72,0),(0,40),(72,40) 

206 

28 

(0,0),(72,0),(0,40),(72,40) 

578 

327 

(0,0),(72,0),(0,40),(72,40) 

235 

136 

(0,0),(72,0),(0,40),(72,40) 

437 

59 

(0,0),(72,0),(0,40),(72,40) 

65 

142 

(0,0),(72,0),(0,40),(72,40) 

583 

173 

(0,0),(72,0),(0,40),(72,40) 

288 

95 

(0,0),(72,0),(0,40),(72,40) 

473 

103 

(0,0),(72,0),(0,40),(72,40) 

554 

217 

(0,0),(144,0),(0,80),(144,80) 

8 

320 

(0,0),(144,0),(0,80),(144,80) 

486 

46 

(0,0),(144,0),(0,80),(144,80) 

365 
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136 

(0,0),(144,0),(0,80),(144,80) 

180 

40 

(0,0),(288,0),(0,160),(288,160) 

 

i_detect/neg/neg3.jpg 

7 

686 

429 

(0,0),(18,0),(0,10),(18,10) 

157 

317 

(0,0),(72,0),(0,40),(72,40) 

437 

295 

(0,0),(72,0),(0,40),(72,40) 

284 

351 

(0,0),(72,0),(0,40),(72,40) 

489 

341 

(0,0),(144,0),(0,80),(144,80) 

198 

80 

(0,0),(144,0),(0,80),(144,80) 

184 

280 

(0,0),(288,0),(0,160),(288,160) 

 

i_detect/neg/neg4.jpg 

16 

261 

245 

(0,0),(72,0),(0,40),(72,40) 

596 

62 

(0,0),(72,0),(0,40),(72,40) 

293 

33 

(0,0),(72,0),(0,40),(72,40) 

401 

186 

(0,0),(72,0),(0,40),(72,40) 

25 

311 

(0,0),(144,0),(0,80),(144,80) 

171 

185 

(0,0),(144,0),(0,80),(144,80) 

445 

135 

(0,0),(144,0),(0,80),(144,80) 

351 
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275 

(0,0),(144,0),(0,80),(144,80) 

317 

348 

(0,0),(144,0),(0,80),(144,80) 

450 

253 

(0,0),(144,0),(0,80),(144,80) 

38 

8 

(0,0),(288,0),(0,160),(288,160) 

259 

6 

(0,0),(288,0),(0,160),(288,160) 

362 

108 

(0,0),(288,0),(0,160),(288,160) 

83 

172 

(0,0),(288,0),(0,160),(288,160) 

296 

231 

(0,0),(288,0),(0,160),(288,160) 

53 

269 

(0,0),(288,0),(0,160),(288,160) 

 

i_detect/neg/neg5.jpg 

8 

186 

368 

(0,0),(72,0),(0,40),(72,40) 

441 

280 

(0,0),(72,0),(0,40),(72,40) 

3 

256 

(0,0),(72,0),(0,40),(72,40) 

500 

354 

(0,0),(72,0),(0,40),(72,40) 

292 

395 

(0,0),(72,0),(0,40),(72,40) 

220 

247 

(0,0),(144,0),(0,80),(144,80) 

352 

144 

(0,0),(288,0),(0,160),(288,160) 

90 

176 

(0,0),(288,0),(0,160),(288,160) 
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i_detect/pos/pos1.jpg 

68 

137 

496 

(0,0),(36,0),(0,20),(36,20) 

130 

364 

(0,0),(36,0),(0,20),(36,20) 

16 

472 

(0,0),(72,0),(0,40),(72,40) 

80 

543 

(0,0),(72,0),(0,40),(72,40) 

77 

505 

(0,0),(72,0),(0,40),(72,40) 

229 

385 

(0,0),(72,0),(0,40),(72,40) 

193 

290 

(0,0),(72,0),(0,40),(72,40) 

174 

478 

(0,0),(72,0),(0,40),(72,40) 

190 

150 

(0,0),(72,0),(0,40),(72,40) 

138 

532 

(0,0),(72,0),(0,40),(72,40) 

128 

506 

(0,0),(72,0),(0,40),(72,40) 

261 

145 

(0,0),(72,0),(0,40),(72,40) 

220 

472 

(0,0),(72,0),(0,40),(72,40) 

329 

488 

(0,0),(72,0),(0,40),(72,40) 

486 

502 

(0,0),(72,0),(0,40),(72,40) 

789 

383 

(0,0),(72,0),(0,40),(72,40) 

614 

477 

(0,0),(72,0),(0,40),(72,40) 

698 
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535 

(0,0),(72,0),(0,40),(72,40) 

651 

494 

(0,0),(72,0),(0,40),(72,40) 

716 

504 

(0,0),(72,0),(0,40),(72,40) 

868 

478 

(0,0),(72,0),(0,40),(72,40) 

825 

550 

(0,0),(72,0),(0,40),(72,40) 

121 

398 

(0,0),(72,0),(0,40),(72,40) 

414 

550 

(0,0),(72,0),(0,40),(72,40) 

641 

150 

(0,0),(72,0),(0,40),(72,40) 

741 

547 

(0,0),(72,0),(0,40),(72,40) 

275 

399 

(0,0),(72,0),(0,40),(72,40) 

751 

493 

(0,0),(72,0),(0,40),(72,40) 

848 

508 

(0,0),(72,0),(0,40),(72,40) 

206 

320 

(0,0),(72,0),(0,40),(72,40) 

370 

550 

(0,0),(72,0),(0,40),(72,40) 

578 

549 

(0,0),(72,0),(0,40),(72,40) 

150 

324 

(0,0),(72,0),(0,40),(72,40) 

493 

407 

(0,0),(72,0),(0,40),(72,40) 

216 

173 

(0,0),(72,0),(0,40),(72,40) 

572 
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173 

(0,0),(72,0),(0,40),(72,40) 

389 

519 

(0,0),(72,0),(0,40),(72,40) 

49 

347 

(0,0),(72,0),(0,40),(72,40) 

93 

328 

(0,0),(72,0),(0,40),(72,40) 

85 

71 

(0,0),(72,0),(0,40),(72,40) 

239 

428 

(0,0),(72,0),(0,40),(72,40) 

552 

425 

(0,0),(72,0),(0,40),(72,40) 

842 

422 

(0,0),(72,0),(0,40),(72,40) 

174 

352 

(0,0),(72,0),(0,40),(72,40) 

167 

437 

(0,0),(72,0),(0,40),(72,40) 

799 

522 

(0,0),(72,0),(0,40),(72,40) 

272 

427 

(0,0),(72,0),(0,40),(72,40) 

369 

356 

(0,0),(72,0),(0,40),(72,40) 

764 

111 

(0,0),(72,0),(0,40),(72,40) 

3 

531 

(0,0),(72,0),(0,40),(72,40) 

453 

432 

(0,0),(72,0),(0,40),(72,40) 

27 

273 

(0,0),(72,0),(0,40),(72,40) 

9 

250 

(0,0),(72,0),(0,40),(72,40) 

240 
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237 

(0,0),(144,0),(0,80),(144,80) 

318 

396 

(0,0),(144,0),(0,80),(144,80) 

361 

164 

(0,0),(144,0),(0,80),(144,80) 

612 

482 

(0,0),(144,0),(0,80),(144,80) 

700 

315 

(0,0),(144,0),(0,80),(144,80) 

572 

409 

(0,0),(144,0),(0,80),(144,80) 

461 

499 

(0,0),(144,0),(0,80),(144,80) 

91 

122 

(0,0),(144,0),(0,80),(144,80) 

704 

433 

(0,0),(144,0),(0,80),(144,80) 

568 

144 

(0,0),(144,0),(0,80),(144,80) 

227 

286 

(0,0),(144,0),(0,80),(144,80) 

108 

304 

(0,0),(144,0),(0,80),(144,80) 

232 

236 

(0,0),(288,0),(0,160),(288,160) 

452 

254 

(0,0),(288,0),(0,160),(288,160) 

244 

384 

(0,0),(288,0),(0,160),(288,160) 

 

i_detect/pos/pos2.jpg 

31 

586 

616 

(0,0),(18,0),(0,10),(18,10) 

345 

692 

(0,0),(18,0),(0,10),(18,10) 

544 
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684 

(0,0),(18,0),(0,10),(18,10) 

37 

663 

(0,0),(72,0),(0,40),(72,40) 

132 

591 

(0,0),(72,0),(0,40),(72,40) 

300 

550 

(0,0),(72,0),(0,40),(72,40) 

203 

663 

(0,0),(72,0),(0,40),(72,40) 

378 

659 

(0,0),(72,0),(0,40),(72,40) 

81 

612 

(0,0),(72,0),(0,40),(72,40) 

344 

598 

(0,0),(72,0),(0,40),(72,40) 

617 

569 

(0,0),(72,0),(0,40),(72,40) 

727 

669 

(0,0),(72,0),(0,40),(72,40) 

871 

573 

(0,0),(72,0),(0,40),(72,40) 

222 

578 

(0,0),(72,0),(0,40),(72,40) 

646 

616 

(0,0),(72,0),(0,40),(72,40) 

781 

594 

(0,0),(72,0),(0,40),(72,40) 

782 

482 

(0,0),(72,0),(0,40),(72,40) 

307 

560 

(0,0),(144,0),(0,80),(144,80) 

780 

506 

(0,0),(144,0),(0,80),(144,80) 

97 

353 

(0,0),(144,0),(0,80),(144,80) 

17 
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427 

(0,0),(144,0),(0,80),(144,80) 

181 

450 

(0,0),(144,0),(0,80),(144,80) 

255 

528 

(0,0),(144,0),(0,80),(144,80) 

700 

592 

(0,0),(144,0),(0,80),(144,80) 

552 

540 

(0,0),(144,0),(0,80),(144,80) 

6 

622 

(0,0),(144,0),(0,80),(144,80) 

118 

388 

(0,0),(288,0),(0,160),(288,160) 

590 

392 

(0,0),(288,0),(0,160),(288,160) 

302 

394 

(0,0),(288,0),(0,160),(288,160) 

208 

532 

(0,0),(288,0),(0,160),(288,160) 

43 

78 

(0,0),(576,0),(0,320),(576,320) 

 

i_detect/pos/pos3.jpg 

2 

640 

385 

(0,0),(144,0),(0,80),(144,80) 

621 

326 

(0,0),(288,0),(0,160),(288,160) 

 

i_detect/pos/pos4.jpg 

9 

237 

407 
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Cloud identification 

Omitted. The results from this experimented yielded no data (ie no clouds were 

detected in any of the images tested). 
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