Thesis Submission Form
Save File as “Your_Lastname_YourFirstName.doc” and send to your
thesis supervisor.

Author (1) : .
[Last Name, First Name, Initials) —r\a\)kta\:c, S \4—&'\/[(\ X K H
Author (2)]
{If required) -
Author (3} i
{If required)
Class E.g. PSYC 4105
CosC 43A47
Abstract
gﬁx, 'u\.ﬂ.st r
Notes E.g. Includes figures.

E.g. Includes documentation on computer disc.

Cen _}J(uu;fs

Archiving, Access, and
Use License/ Terms

The author(s) has given permission for this thesis to be consulted as a regular
part of the Arthur A. Wishart Library collection and also to reproduce all or
parts of it, for scholarly research only, in compliance with the Canadian
Copyright Act. This digital edition is released under Creative Commons
Attribution-Noncommercial-No Derivative Works 2.5 Canada License. You are
free to share — to copy, distribute and transmit the work under the following
conditions: Attribution. You must attribute the work in the manner specified by
the author{s) or licensor(s) {but not in any way that suggests that they endorse
you or your use of the work),

Noncommercial. You may not use this work for commercial purposes. No
Derivative Works. You may not alter, transform, or build upon this work. For any
reuse or distribution, you must make clear to others the license terms of this
work. Any of the above conditions can be waived if you get permission from the
copyright holder(s). The author’s moral rights are retained in this license.

Date Work Created

Mot 22| 2

Date Submitted to Library

/ﬂf(\;\ (o {/,u\\

By completing and submitting this document the author{s) indicate that
he or she has read, understood and accepted the terms of the license
above.

Submitting Your Thesis

Information Collection

Personal information {e.g. authorship) contained in the Institutional Repository and archive is
collected pursuant to The Freedom of information and Protection of Privacy Act (FIPPA) and will be
used for the purposes of administering the Algoma University library system, providing service to
users of this library system, and creating new and updating existing library system databases (both
on- and off-campus).

Terms of Deposit, Use, and Reproduction of Theses (appears in each IR catalogue record)

The author(s) has given permission for this thesis tc be consulted as a regular part of the Arthur A.
Wishart Library collection and also to reproduce all or parts of it, for scholarly research only, in
compliance with the Canadian Copyright Act. This digital edition is released under Creative Commons
Attribution-Noncommercial-No Derivative Works 2.5 Canada License. You are free to share — to
copy, distribute and transmit the work under the following conditions: Attribution. You must
attribute the work in the manner specified by the author(s) or licensor(s} {but not in any way that
suggests that they endorse you or your use of the work).

Noncommercial, You may not use this work for commercial purposes. No Derivative Works. You may
not alter, transform, or build upon this work. For any reuse or distribution, you must make clear to
others the license terms of this wark. Any of the above conditions can be waived if you get
permission from the copyright holder(s). The author's moral rights are retained in this license.

Questions about this collection and disclosure should be directed to the University Librarian, Arthur

A. Wishart Library, Algoma University, 1520 Queen St. E., Sault Ste. Marie, ON P6A 2G4; Telephone
(705) 949-2301 x4611.

Ken Hernden Page 1 4/10/2012

Software Testing and Development on the Open

Source Integrated Library System Evergreen

Kevin Hauck

A thesis
presented to Algoma University
in fulfillment of the
thesis requirement for the degree of
Bachelor of Science
in

Computer Science

Advisor: Dr. Simon Xu

Sault Ste. Marie, Ontario, Canada, 2012

©Kevin Hauck 2012

AUTHOR'S DECLARATION

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including
any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Abstract

Libraries using software to manage their operations have specific requirements since, in most cases,
library operations can be quite extensive. The software required to manage a library must be well written
and reliable, The Open Source Integrated Library System Evergreen has garnered much attention and
development but lacks an adequate testing suite. Due to the intense nature of Evergreen’s requirements,
varying from server interaction, database management, and communication amongst applications, the
entailing source code is vast. To reduce the errors during development and usage, it is wise to understand
the requirement of testing, specifically, White Box Testing. This study will engage in the use of creating
White Box Tests and then using coverage reports to compare the tests against the full Evergreen software
suite. In doing so, we will find that given Evergreen’s modular nature; many of the tests written overlap
other modules, causing indirect testing. This result is useful because indirectly tested modules can be

removed from the test plan, and thus an exhaustive test suite is not required.

Keywords: Evergreen, OpenSRF, Integrated Library Systems, Open Source Software, Project Conifer,
Perl, White Box Testing, CPAN, Code Coverage

iii

Acknowledgements

I wish to extend my thanks to my advisor, Dr. Simon Xu, for his assistance through this exciting
work. [also wish to thank Robin Isard and Richard Scott from the Wishart Library for their
assistance and expertise with the Evergreen system.

Table of Contents

BUUTHORS DECLARATION. ..o oo et e bt b bt b5t 8t 8 01 5 110 0 ii

Absizact R T R e L o L T et o i il

KRB B BEIIERES ... vcces s s verer s Siin b s 5 b P 4 B 4 4 44 4 445 4 4 41 40 £ 2 4 1 4 PR A AR R RO iv

T O T INETIE 5 . 4o B G 1 A o e e v

List of Figures wi

Chapier 1 Introduction and Background IRFORMETIon ... s s e A

1.1 Integrated Library Systems............. A

1.2 Open Source Seftware -

1.3 Open Source Integrated Library Systems ... cooecn - 3

o BV Y. oottt e e b 4 b b bR 4

1.5 Technical Details of EVETEIEEN oo s s ¥ B

1.6 Perl and Testingcoouvn..e. e e e S T 7

1.6.7 Perl = BOcK Rt IO IR ... om0 494534 4 4 2 2 4 4 2 P P4 105 21 TS TR 21 21121 11224 74T TR R T AT T

T TN U PPN i i s o o e e 8

1.7 Objectives et £ 1 8 AT AT e e

DB IVDRIVIMEONL ..o v o cesnavasarasarmensanssasesasssoes o s s s om0 e 4 4 4 4 4 4 3 44342454 45454421 £ 11 44 Y P RS T R PR v g

Chapter 2 Methodology and TeehRIEES ..o i i i e o e s o e oA a1 e TS .]

L 10

2.1.1 Installation of OpenSRF and EVSrgreen .o W10

2.1.2 Evergresn’s Structure 1 182 g AL 4 1 1 13

2.2 Whize box tesling ' 15

2.3 Porl Unit Tests. ... i s s e {3

2.3.1 Tesling using the Tes:More module ... s i S) |

O T e e v s L 1 e 1 £ e e e e 19

L Covmmps Emoniblb .. S S ST o e R e 20

2.4.1 What is Coverage? o im0

2,2 Dl T0VEE BN APEIICIIRIN ... rare s e 4284 4 A A A 4 4 44 4 A4 24248481 R RSB R S 1 00 2l

1.5 Creming Tesis S D SO S . pa]

T A TN J P UTIIC B . c c c nc m m m d 8 E4S 14 4 40 3 ko 24

L BN BT T I i i e A A iy e ' i s i i .24

26,2 Why are we nol using bisck box testing? s

T AT v i e i e i e s 2

] T A MM o o e e e e i i 34 4 i 4 4 b 40 0 5 4 e e o e e i e 25

e P R e S L e L S S S,

LI M L L e bt A Lo A e A 4 M S Ll e 0 vl

Chapter 4 Conclusiong. ... s -

Chapier 5 Fatire Work.........comemmmmmns o)

Appendix A Source Code 30

Appendix C Devel:Cover SymOpsiso s s 49

Appendix D Coverage Reports 57
Coverage Summary 0 i B s i i e

List of Figures

ssacssnnas

eessessrares

denaeusIREEIRIREEEY

—— |
ceeenennens 12
B

Figure 1.

FEIIE IR R I RIS

tressansaans

Figure 2

sesnersiie

ESTTIRITR TS sesansunse

aseeatesens

LT R YT TR YT EY)

ssscsvencrrre

sssussasne sereunniue

sesensssvene

sesrrsiNRaLES

Figure 3

EEREIarEaE

tesbransansans sesssusennsun

ssssssnnne

vamsarsase

Figure 4

wsssssesssnnnsse ceserereaa aresrereanrens T I L)

areen

REasIIssIaRErea sassavsnns

Figure 5

Frrecantranes

wrsusssaasesnn

ssscevenns T TP TT T YT

Figure 6

Figure 7

T T TR TI Y

T T TR YA TS

wnavesesunsns

sassnssane

sssersensanen

svsavssranse

assssrensere

eersaraneanren TR YT TX PY YY)

Figure 8

oGy

AresrsasrErane sapsasanseas ssssusasns

sstesssenan

Figure 9

oLy

areumrrvens T YT YT T IETTY T TN

Figure 10

sessesnrsens sessencanceare T TR I

LT ER LT IT Y YRR PYRY

Figure 11.

ssscessseses carsnsearere

Figure 12.......cc0o...

T

P R T R T P PR PR T Y PO PR PR T

sevararean

TR T YT RYY Y

eaesnasassansy

asammressus

sessensreren

ssaraaseneane

Figure 13.

Chapter 1

Introduction and Background Information

1.1 Integrated Library Systems

Libraries in academic institutions are required to manage a variety of tasks and it is
important to realize that many of the concepts from the information technology field can
be applied to library science, maintenance, and upkeep. These concepts include, database
and resource management, given that libraries manage large amounts of information.
Modern libraries are fortunate to have software to manage many of their tasks; such tasks
include cataloguing, executing acquisitions, and circulation. The software used to
manage the above is known as an Integrated Library System, in which functionality is
combined with database access and manipulation. The idea, development, and usage of
Integrated Library Systems have caused much discussion among professionals in fields
such as information technology and library science. The inherit nature and purpose of a
library is to provide vast information; therefore, one of the main tools required by an
Integrated Library system is a database. The science behind databases and database
management systems relies heavily on many concepts found in computer science and
information technology that one can see that the word integrated is not only used to
describe the systems’ interaction with library services, but also with many ideas in
computer science. Although Integrated Library Systems are built to serve libraries, it is

indeed still software and is therefore maintained using a structure programming language.

1.2 Open Source Software

Open source software has grown extensively in popularity with a variety of software
available ranging from operating systems, basic applications, and advanced multi-faceted
systems. The most interesting notion when looking into the development of software in
the open source community is that the software being created and maintained is
comparable to many popular proprietary titles. For example, Debian, one a popular open
source operating system has 29,000 different packages available for free on its website.
Development of open source software is largely done in a community setting, as in many
cases there is no real financial motivation. Regardless of any work contributed to the
software, the end product will always be publicly available. However, in many cases of
development, open source software does turn a profit through selling support and
consulting contracts. This is a viable and popular option as the costs of developing and
supporting open source software can be considerably less than even the purchasing price
for many proprietary systems.

From the notion of public availability, open source software benefits greatly from the
possibility of the actual users, who, with the proper motivation, become co-developers
[1]. The more popular cases of open source software have larger user bases and therefore
a larger possible set of extended developers. Given that open source allows it users’
access to the source code, there is the possibility of some users providing development.
End-users that have access to the information and source code of the software that they

are using are more likely not only to find problems with software but also, indeed, correct

it themselves or provide detailed information about the problem. The idea of rapid
releasing was introduced during the development of Linux and many of the individual
distributions that were created [1]. Rapid releasing is important to open source software
as it allows many of the problems that are easily corrected to be implemented quickly and
effectively. With the arrival of Linux and rapid releasing, many of the users of the
system were able to quickly provide critical analysis about the quality of the software and

offer valuable debugging {1].

1.3 Open Source Integrated Library Systems

Integrated Library Systems vary greatly in the functions and operations that they provide.
The requirements and specifications that an individual institution requires of its system
also vary. A proven approach to procuring an integrated library system for an institution
is to use already written and functioning open source software and modify the existing
routines, or provide additions to meet the desired functionality. In support of this Yang
and Hofmann proclaim:

Open source has been the center of attention in the library world for the past

several years. Koha and Evergreen are the two major open-source integrated

library systems (ILSs), and they continue to grow in maturity and popularity. [11]
Open source systems are accepted in library settings as they allow for the “opportunity to
add features to a system that will take years for a proprietary vendor to develop” [11].
Having this in-house ability to optimize software to the requirements that an institution
needs is required in libraries since in most cases an individual library has different needs

3

than others. An advantage of choosing open source over proprietary when procuring an
integrated library system is that it is free to use and try. In cases where it does not meet

the needs of the library, or is unfeasible to modify, the library can choose not to pursue it.

1.4 Evergreen

Evergreen is an Open Source Integrated Library System with initial development by “a
small in-house team using open source technologies, [providing] a significantly lower
cost than the commercial options” [2]). Given these features, one can see that Evergreen
certainly fits well in a library setting, and more specifically a university library, with
consideration to how much budgeting and financial management is required to run such
institutions. Evergreen was created by the Georgia Public Library Service and has since
grown in popularity and functionality. The Georgia Public Library Service’s
development and implementation of Evergreen “serves its large consortial group of
libraries across the state” [2]. The Georgia Public Library Service created the Public
Network for Electronic Services (PINES) Consortium involving “250 public libraries in
44 systems [with] over 1.3 million active users and includes nearly eight million items”
[3]. This sense of a community and togetherness is what drives success and further
development of the Evergreen system and has proven to be effective. With so many
different institutions involved and many users with possibly varying backgrounds, the
extent of debugging has no bounds. Since many of the users of the system are involved in
the consortium and also help in the development this gives them a greater appreciation

and understanding of the software. The Public Network for Electronic Services (PINES)

4

Consortium “provides library automation for public libraries statewide at no cost to the
members” [3]. With no real financial binding to get started with the system, the
Evergreen system that the PINES consortium delivers provides users and libraries little
cause to argue against using the system regardless of providing means to contribute to it.
Individuals at libraries who are not involved in the development process can still provide
excellent debugging information through their day-to-day usage. Figure 1, found below

shows a basic interface that one would use to perform a search.

EVERMGREEN
J - [ast)

ey

Kmywrord (6]

Aiferan (]

ht i 2 Sty .Bmllil!l*tﬁ'lmﬂ Wy Attt

Ewejs Crialen HTML oobd) | Find »Library Mest Bed Hels QoW ERER IRQAED

Figure 1[11]: A basic representation of an interface that Evergreen provides

1.5 Technical Details of Evergreen

Evergreen is a multi-tiered software suite that uses an Apache web server built on top of a
framework called OpenSRF. OpenSRF which stands for The Open Service Request
Framework “is an inter-application message passing architecture built on XMPP [the
Extensive Messaging and Presence Protocol] ” [2], which means that OpenSRF provides
a means of communication for software components and applications. Not only is
Evergreen open source, but it draws on the strengths of many other open source
technologies [2]. The open source technologies that Evergreen takes advantage of
include Apache, OpenSRF, a PostgreSQL database, and uses coding from languages such
as Perl and C [2]. The interfaces’ overlaying technology makes use of XML User
Interface Language (XUL), for the client’s application, similar to that of Firefox [2].
Evergreen is directly built on top of and utilizes OpenSRF, Weber notes that “messaging
is an important part of application frameworks, allowing different processes to exchange
information”, this highly scalable and robust framework is what Evergreen needs [2].
OpenSRF’s basis is from “a decentralized XML technology originally intended for
messaging between people” known as Jabber; “Jabber’s scalable design also [makes] it

ideal for use as an application messaging framework” [2].

1.6 Perl and Testing

Perl and testing pair well together; we will explore this topic further including
understanding the many benefits of using Perl and, specifically, the benefits of using Perl

to write tests.

1.6.1 Perl - Background Information

Perl is an exceptional programming language that has a variety of conventional uses.
With a large set of available modules through the Comprehensive Perl Archive Network,
(CPAN), many of the problems one would use perl to solve are already solved. Perl has
been accepted as a scripting language and its uses are very practical. Perl programs,
“when executed, are compiled into an intermediate representation without creating an
immediate file and then interpreted” [4]). This provides Perl an exceptional advantage
over most languages since Perl programs are executable by calling their source file. Perl
also uses “automatic memory management and [has access to] large free libraries” [4].
As mentioned above, the free library that Perl uses is CPAN, where many modules are
importable and well documented. When comparing Perl to other programming languages
it certainly exceeds many expectations. Fourment and Gillings found when writing their
article, “A Comparison of Common Programming Languages Used in Bioinformatics”,
that when compared to another scripting language, Python, “Perl clearly outperformed

Python for I/O operations” [4]. However, the true strength of Perl is its distributable

nature, ease of use, and it’s inherent ability to conquer a variety of tasks given that it is a

scripting language.

1.6.2 Testing with Perl

Perl has access to community written modules through CPAN, and, of these modules, the
most important ones for testing are Test::More, Test::Simple, and Test::Harness. With
these modules developers can write concise tests using a variety of assertions to test
almost anything written in Perl. After tests have been written, another useful module
from CPAN is the Devel::Cover module, which allows the written tests to be profiled
against the source code to show code coverage. The need for code coverage is important
because if there are crucial areas of code that have not been tested and are possibly
problematic, many errors can easily arise. When testing code from a different Perl file,
more specifically a Perl module, one can use the same technique as accessing the testing
modules: Module::PeriModule. Once a module is imported using the ‘use’ command the
subroutines within that module are callable, and one can pass parameters and check the

returned results. The assertions provided by Test::More can be found in Appendix B.

1.7 Objectives

The objective of this study is to determine an effective approach for creating a testing
suite for an open source project. More specifically, the open source project being used to
create a test suite will be the integrated library system Evergreen. We will explore and
discover the structure of Evergreen and how its modules are used in conjunction with one

8

another. The structure of Evergreen is what is in question when we are testing since our
intent is to create a testing suite using white box testing techniques. Once tests have been
written, the next step will be to evaluate the effectiveness of the tests, and that can be
accomplished by showing test coverage. The unique process of writing tests, then
showing coverage to reveal the remainder of untested code, will be our strategy and

approach.

1.8 Motivation

The motivation to create a useful test suite for Evergreen is that because it is such an
expansive, modular suite there are many possibilities that errors can arise during
development and use. With consideration that the current testing suite for Evergreen is
minimal, this is an area that requires attention. Given Evergreen’s open source nature,
and development model, testing is not generally regarded as high a priority as other tasks
during development. Armour notes that testing is “a knowledge acquisition activity
rather than simply a post hoc quality assurance process” [10], proving that the usefulness
of testing is not only to provide quality assurance but to give a greater understanding of
the software. So it is certain that making a test suite not only increases the quality of the
source code structure, but also allows it to be better understood. Considering that white
box testing is done with regards to the actual code, and not functionality, difficulty
certainly increases in that one cannot rely on abstraction for tests. Further consideration
of the expansive modular nature of Evergreen also makes this a worthwhile endeavor as it

does indeed have more code than a handful of unit cases can test

9

Chapter 2
Methodology and Techniques

2.1 Getting Started

There are a variety of prerequisites before one can start exploring Evergreen’s code
structure and inner workings. The basic requirements for getting started include having a
Linux operating system installed, Debian or Ubuntu, install a PostgreSQL database, and

configure an Apache web server.

2.1.1 Installation of OpenSRF and Evergreen

To begin the process of generating a test suite one must first have access to the software’s
source code and be able to execute it. Getting started with Evergreen is a tedious and
lengthy process because to get a full installation with a functioning server there are a
variety of steps involved. It is important to have a full installation as the developer and
tester can be ensured that their work is not undermined and that the work they do will
actually be useful. Since Evergreen is built on top of OpenSRF, OpenSRF must be
installed and functional first. The current version available for OpenSRF is OpenSRF
2.0.1 and is available via GIT repository or by a direct zipped download [12]. The
installation requirement of OpenSRF, and thus Evergreen, for development is that the
operating system required is a Linux distribution, namely, either Debian or Ubuntu. The

operating system that is used to conduct this study is Ubuntu-Lucid. After installation

10

and compilation of OpenSRF, OpenSRF requires the user to set up separate, private and
public domains, specifically “jabber domains to separate services into public and private
realms” [13]. Once domains are setup, they “need two Jabber users to manage the
OpenSRF communication”, namely, a router and an opensrf user [13]. OpenSRF is a
great framework that allows it to be tested without Evergreen built on top of it, namely,
one can request some of its more basic functions such as its math service. Figure 2 below
explicitly shows the basic operation of OpenSRF’s math service, it computes the value of
242°,

/openila/bin/srfsh
grfsh# request opensrf.math add 2 2

Received Data: 4

Request Completed Succesafully
Request Time in seconds: 0.007519

arfsh#

Figure 2 [13]: A screenshot of the usage of OpenSRF’s math service

After confirmation of the above operation, one can begin the installation process for
Evergreen. One must first install and compile Evergreen, once completed, an Apache
web server can be configured, and finally, a PostgreSQL 9.0 server [14]. When
configuring the PostgresSQL 9.0 server, one must also assign a name for the database,
users, admin users, passwords, hostnames, and ports that will be associated with the

database [14]. Once the above is completed, one can create or port the database to a

11

remote server [14]. After configuration, Evergreen can be started, and the most basic test
to ensure its correctness is to test to see if one can login with the admin user. Figure 3

directly shows the process below.

/openils/bin/sxrfsh
erfsh% lcgin <admin-user> <admin-pass>

Received Data: "250bf1518c7527a03249858687714376"
Request Completed Successfully
Request Time in seconds: 0.045286

Received Data: {

"ilsevent”:0,

"cextcode”: "SUCCESS",

"desc":" ",

"pid":216186,

"stacktrace®”:"oils auth.c:3047,

"payload": {
"authtoken”: "e5£9827cc0£93b503alcceebaabbddla”,
"authrtime™:420

Request Completed Successfully
Request Time in seconds: 1.336568

Figure 3 [141: A synopsis of an attempt to login and make a connection to a fully installed

distribution of Evergreen

12

2.1.2 Evergreen’s Structure

The Evergreen suite is made up of many modules, more specifically perl modules. Each

module has a specific use and varies amongst the more general categories: Application,

Utilities, Reporter, WWW, and SIP. See Figure 4 for a brief look at the directory

structure and arrangement of the perl modules. The modules have extension .pm and

within each of the directories more specific perl modules can be found.

opensrf@kevin-virtual:

Application const
Application.pm Event
opensrf@kevin-virtual

—/Evergreen-IL5-2.08.18a/0pen-ILS/src/perlmods/OpeniIlss 1s

.pm Perm.pm SIP Template WWW
.pm Reporter SIP.pm Utils
:~/Evergreen-ILS-2.8.18a/0pen-ILS/src/perlmods/0OpenILsSs

Figure 4: Directory structure showing the composition of modules in the OpenlILS directory

The perl modules found under the Application directory are function specific and are split

up further into individual categories varying from acquisitions, actor, catalogues,

circulation, search and storage. Below, in Figure 5, we can see the directory structure as

well as some additional perl modules, which act as the driving parent of the

subdirectories. Some miscellaneous perl modules are also found in this directory, namely

modules such as Booking.pm, Collections.pm, and Serial.pm. For example, Booking.pm

handles the bookings of resources.

13

apefsrfekevin-virtual:-/Evergreen-ILS-2.8, 18a/0pen-ILS/src/perlmods/0penILS/Applicat
ions 1s

Ace Booking.pm Collecticons.pm Proxy.pm Storage vVandelay.pm
ACqQ.pm cat Fielder.pm Reporter.pm Storage.pnm

Actor cat.pm Ingest.pm Search SuperCat.pm

Actor.pm Circ Penalty.pm Search.pm Trigger

AppUtils.pm Circ.pm PermaCrud.pm Serial.pm JTrigger.pm

Figure 5: Directory structure showing the composition of modules in the OpenILS subdirectory
Application

See Figure 6 below for the structure of Acq for acquisitions. Within this directory we
find modules regarding functions in more basic form that are used to perform
acquisitions, namely, Claims.pm, Financials.pm, Invoice.pm, Lineltem.pm, Order.pm,

Picklist.pm, Provider.pm, and Search.pm.

opensrif@kevin-virtual:-/Evergreen-IL5-2.9.18a/0pen-ILS/src/perlmeds/OpenILS/Applicat
ionsAcqs 1s

Claims.pm EDI.pm Invoice.pm order.pm Provider.pm

EDE Financials.pm Lineitem.pm Picklist.pm Search.pm
opensrf@kevin-virtual:~/Evergreen-115-2.0.108a/0pen-ILS/src/perimods/OpenIlS/Applicat
ionsAcqs

Figure 6: Directory structure showing the composition of modules in the OpenILS/Application

subdirectory Acq (acquisitions) — thus the path is OpenILS/Application/Acq

Careful examination of individual modules and sub-modules reveal that the majority of
modules are composed of subroutines. Understanding this composition and structure is
important as we need this information to plan and construct a test suite. We can test the
modules by calling the subroutines within them. In cases where parameters are required
by a subroutine, we can vary the input we send as parameters to check for different

outputs; it satisfies branch, condition, and decision path testing.

14

2.2 White box testing

White box testing is a fundamental testing technique with a variety of applications.
Haller explicitly notes the importance of white box testing in that it “is an important part
of every software testing and quality assurance strategy” [5]. The objective of white box
testing is to test the structure of software: it does not test functionality, thus revealing any
inaccuracies with the structure of the code. White box testing can be summarized in that
it “analyzes the source code to identify possible execution paths and parameter sets for
the invocation to ensure that the intended execution path is taken” [5]. This approach is
useful as it ensures the soundness of the structure and internal workings of the software.
Such techniques as path, branch, condition, and decision testing test the actual code, to
ensure that source code is reachable, specific conditions results cause exits as proposed,
and the internals of decision structures are reachable. McCabe as cited in Williams
explains that successful path testing provides “a means for ensuring that all independent
paths through a code module have been tested” [15]. So given a variety of different
executable paths, we want to ensure that any of the available routes are tested for better
coverage. White box testing is a useful approach for testing Evergreen because if any
additions or changes occur to the code base, white box testing can be used to test and
document any possibilities of faults or errors in existing code caused by shortcomings in

updated code.

15

2.3 Perl Unit Tests

Dividing a planned test suite up into Unit tests is a good approach as it maintains
modularity and reduces the risk of error. In the subsequent sections, we will explore the
usefulness of Perl’s testing abilities and assistive modules, as well as the concept of unit

testing.

2.3.1 Testing using the Test::More module

Perl, being a scripting language, allows a variety of different ways to execute perl code
and useful ways of naming perl files given their use. For example, Perl not only
understands files ending in ‘.pl’, but also files ending in ‘.pm’, and more specifically for
this situation, *.t’. More explicitly, ‘.pm’, is for Perl modules, to be used in conjunction
with other ‘.pm’ files to create a modular code structure where individual purposes can be
coded into single ‘.pm’ files. For writing test cases, developers can use the “.t’ file
extension and Perl will understand it. As mentioned previously, the most profound and
well-used testing module is Test::More from CPAN. As Test::More is derived from the
module Test::Simple, we will examine Test::Simple first. The basic structure of a test

written in Perl using Test::More can be seen below in Figure 7.

16

use Test::More;

... Fun your tests ...

Figure 7 [6]: A basic synopsis of the structure of a test case, an import statement, followed by

code and assertions.

The simplicity of testing in Perl is easy to see because all one needs to start testing is to
ensure access to the testing module, Test::More, clear access to the source code to be
tested, and begin testing using the assertions provided by Test::More. See Appendix B
for a brief look at how the assertions provided by Test::More can be used. Once a
developer has a set of test cases, for example, TEST1.t, TEST2.t, and TEST3.t, the
developer is able to call the individual test files by using the command perl, as shown in

Figure 3.

perl TEST1.t
perl TEST2.t
perl TEST3.t

Figure 8: An example of how one would run .t test files using the perl command

There is an excellent tool that allows a developer to call many test cases at once, which,
when dealing with many tests divided into individual test files, proves to be much more

efficient and useful than calling each test file individually. If all of the tests files are

placed into a single directory, from the parent directory, the ‘prove’ command can be

used. The synopsis for the prove command can be found in Figure 9.

prove [options] [files/directories]

Figure 9: The structure of the command ‘prove’ and how to use it given options and directory

structure.

Using the prove command, one can call all of the test files within a directory at once and
as they run, you can see the results of each test, results being whether the tests failed or
passed.

The provisions provided to show the results of a test are also simplistic and easy to read.
The testing modules provided on CPAN use 2 unigue counting technique to show the
number of written tests, and the result for each one. An example from the module

Test::Simple is shown in Figure 10.

1.5

ok 1 - new() works

ok 2 - Title() get

ok 3 - Director() get

not ok 4 - Rating() get

Failed test 'Rating() get'

in t/film.t at line 14.

ok 5 - NumExplodingSheep() get
Looks like you failed 1 tests of 5

Figure 10 [7]: Visualization of the result that is shown after a test case is run, explicit

information about the result of the test is visible.
i8

From Figure 10, we can see line by line exactly what is going on. The first line shows
the numbering of the individual tests within the test file, 1..5, which lets us know that
there are assertions 1 through 5. The remainder of the output is descriptive information
regarding the results of the test. The strength of the testing module is clearly noted in
Figure 10 when an error does occur. We have information regarding the failure,
including which subroutine, the test file, and at which line in the source code, this concise
and well documented information is what one needs for debugging. For larger test suites,
the last line is tremendously useful as it allows the tester to see how many of the tests

have failed.

2.3.2 Unit Tests

When software is created using modular design, many features can be easier to represent
and understand. A useful testing technique when software is composed of many distinct
modules is unit testing. Unit testing allows for concise testing of individual units, or
modules of source code. In the case that a module is dependent on other modules, drivers
and stubs can be used to simulate the desired effects for those modules. The simplicity of
unit testing, by testing one single unit of concise source code, reduces the possibility of

error and increases readability.

19

2.4 Coverage Essentials

Testing without the evaluation of the tests can certainly limit the effectiveness of the tests
in question. One must consider what tools are available to evaluate and gauge the
usefulness and thoroughness of a given test suite. It can be difficult to imagine a solution
to a question such as, “how does one test a test?” However, when using white box tests,

the effectiveness of a test suite can be evaluated by determining its coverage.

2.4.1 What is Coverage?

When using white box testing, the idea is to test the code structure, and an important
evaluation tool is to check coverage. It is noted by Inoue and Yamada that “testing-
coverage is one of the important measures to evaluate the quality of testing and tested
software products” [8]. In essence, coverage is the measure which is used to show how
much of the source code is evaluated and tested by a given set of tests. This is useful
because it allows one to see what areas have and have not been tested, allowing
reasonable judgement and evaluation of the current state of a test suite. It also allows one
to see any holes in test suites and the determination of any areas that desperately need
testing. Inoue and Yamada summarize the coverage testing techniques as statement
coverage, branch coverage, and path coverage: statement coverage is the measured result
of individual statements executed, thus being an expression of some sort: branch
coverage is the measured result of branches taken, which is measureable from decision
structures, and looping mechanisms; finally, path coverage is the measured result of “all

distinct program paths that have been executed at least once by the tests-cases” [8]. As
20

this study will involve creating white box tests, it is natural to have coverage reports to

show the effectiveness and thoroughness of those tests.

2.4.2 Devel::Cover and Application

Devel::Cover, like Test::More, is another perl module that is included in CPAN. A
developer is free to download and use Devel::Cover as they please. Devel::Cover is used
to provide “code coverage metrics for Perl” [9]. The synopsis for Devel::Cover is also
included in Appendix C. Devel::Cover evaluates a test suite against a source code base
that returns coverage information in an html file explicitly showing statement, branch,
condition, and subroutine coverage. The module also gives useful statistics regarding the
current coverage of tests. Figure 11 gives a brief look at the main interface for accessing

the reports and gives a generalized description using statistics for the current coverage.

[GE=EasEs] mome/opens/Evergreen-ils-2 1. 1/Open-itS/src/perimods/cover_db

Figure 11: A screenshot of the resulting compilation of the test suite against the software suite

created using the module Devel::Cover

21

Figure 11 is a visualization of the perl modules that have been run through Devel::Cover,
this list of perl modules in the entire suite is much longer. However, from Figure 11, one
can see the functionality and usefulness of Devel::Cover. The conciseness and
readability is evident for the perl modules in question and from which directory they
originate. The remainder of Figure 11 explicitly allows one to see the intuitive nature of
Devel::Cover as it shows the meaningful coverage statistics, using percentages, regarding
each of the modules listed. A brief example is shown below in Figure 12 regarding the

results for Application.pm:

67.5% statement coverage
30.0% branch coverage
50.0% condition coverage

75% subroutine coverage

Figure 12: Coverage percentages for Application.pm

Therefore, it is easy to see that in comparison to many of the other perl modules listed in
Figure 11, excluding Acq.pm, Application.pm has better coverage than any other module
shown. The use of the tool Devel::Cover provides a unique way to calculate and
determine which areas of the software have been evaluated by our tests, and which areas
require attention. During the usage of Devel::Cover, testing becomes easier because
there are situations where tests may be written and given the modular nature of projects,

such as this one, that one test may indirectly test many other areas unbeknownst to the

22

developer. This is indeed a nice additive feature; therefore, explicitly testing everything

that is visible to the developer can now in a sense be excused.

2.5 Creating Tests

With the introduction of Devel::Cover, we can use its effective reports to determine what
has been tested thus far. The current Evergreen distributions include a small functioning
test suite that uses the Test::More module and the assertion ‘use_ok’ to verify usability
and reachability of each of the ‘*.pm’ modules. The evaluation of the tests with
Devel::Cover creates an excellent representation of current coverage. To create more
tests, one can use the reports given by Devel::Cover to determine what needs testing, and
what has already been tested in addition to what has already been indirectly tested. The
process of creating tests is twofold in that a developer should create tests, but after each
test is created, compile it with other tests in the test suite and use Devel::Cover to
compare current coverage standings. This technique is very useful as it reduces the load
of exhaustive white box testing. This means that we do not have to write a test for every
statement, branch, conditions statement, and hopefully some subroutines. This approach
is effective and saves much time.

Given the modular nature of the Evergreen suite, many of the overlaying modules that
control a variety of the sub-modules, which exist in lower subdirectories, often indirectly
test many of the paths and coverage requirements of those lower modules. With this in
mind, much of the testing done on Evergreen can be done indirectly by examining current

coverage. When a test is written for a specific module and that module calls another

23

distinct module, it is reliable and worthwhile to check the coverage of the called module
to check indirect testing. In the case that the coverage report indicates that the called
module has been tested, then we can reduce our exhaustive testing load by noting that
specific tests do not need to be written for the indirectly tested module. Using this
technique and approach to writing tests will severely reduce the amount of subsequent

planning and creation of tests for the majority of the suite.

2.6 Alternate Approaches

An alternate approach to this study would be to use a different testing technique, namely,
black box testing. We will explore black box testing and the reasons why it is not very

applicable in the upcoming sub-section.

2.6.1 Black Box Testing

This study involves the use of white box testing because it uses coverage to evaluate the
effectiveness of the tests created. While, black box testing tests the functional
requirements of the software it does not return any useful information about the quality or
structure of the source code. Black box testing tests the functional requirements and one
can use a variety of techniques to do this. It depends heavily on abstraction and little is
known as of the internal workings of the source code, other than input requirements and

desired output. Figure 13 below shows a representation of the basis of a black box test.

24

Input Output
... Black Box ceeemnin iy

Figure 13 [16]: A representation of the basis of a black box testing. The ‘Black Box® is where

the code is and has abstraction, thus, we do not see the code.

2.6.2 Why are we not using black box testing?

Black box testing is not useful for this study because although it may be able to test
functional requirements, it gives no feedback regarding the success or failure of
individual statements, execution paths, condition statements, branching, or decision
structures. Since Evergreen’s source code is vast, testing structure is more of a necessity
than functional testing because it allows developers to find source code errors with

relative ease using a white box testing suite.

Chapter 3

Analysis

3.1 Effectiveness

With a variety of white box tests written and coverage reports to evaluate the tests using
statistical analysis in the form of percentage of the code base tested in each perl module,
we can evaluate the effectiveness of this process. The approach that was used to create
tests was that of ‘write and check’, which means, write a test, and then run the coverage
reports to evaluate current coverage. This proved effective because given the modular
nature of Evergreen, one test written can often, and often did, indirectly provide coverage
of other dependent modules. This is effective because once we write a test and realize
that the test has accomplished tests that we had planned for in the future, there was no

longer a need to write additional tests to meet the initial plan.

3.2 Results

From Appendix D, the results from the coverage reports show a variety of different areas
of the code base that have testing coverage. With consideration to how large Evergreen
is, there is, and generally always will be more to test, given the nature of testing.
However, with percentages of coverage obtained shown from the coverage reports in
Appendix D, a test suite like this can provide useful and meaningful information to

developers as further development occurs on the system. Using the prove command to

26

run all of the tests at once provides great automation for checking to see if any updates
have caused system instability or problems in unexpected areas. In short, if we change a
subroutine in module ‘A’ and module ‘M’ calls module ‘A’, and in the case that this was

overlooked, we may have errors and not know why.

3.3 Discussion

Evergreen is a nicely constructed software suite and it is divided into many modules and
each module is nicely divided into distinct subroutines. When software is written like
this, it certainly makes it easier to create test suites. The multi-tiered nature and inter-
dependence requirements through the use of an Apache webserver, PostgreSQL 9.0
database, and continuous communication and requests using OpenSREF, a variety of errors
can easily occur. With a functioning test suite, identifying and mending any errors
becomes less tedious. Many of the automation techniques and abilities in Perl certainly

make this process simpler when dealing with a large software suite.

27

Chapter 4

Conclusions

The outcome of this study and work has been worthwhile in that it allowed much to be
learned about open source technologies, testing processes, and many of the unique
features provided by Linux and Perl. Evergreen is an important software suite, and many
different libraries in a variety of locations are dependent on it. Understanding its
structure and implementations is a valuable endeavor and creating test suites is definitely
one of the most important development needs. In situations, like now for example, where
Evergreen is live and it is currently being used, it is important to note that testing bridges
the gap between developers and end-users, it allows developers to catch errors after any
updates, rather than unfortunate situations such as errors occurring during end-user usage.
The approach enhanced in this study can be exploited elsewhere as well as a possible
guideline for writing tests. The write then compare coverage approach showed that
written tests can exceed expectations in that there is the possibility of indirect testing

which lightens an exhaustive testing load.

Chapter 5
Future Work

Future endeavors will certainly include rewriting and improving existing test modules, as
well as creating new modules as the development of Evergreen continues and more
functionality is added. A software suite or system can always use improvement in some
fashion and testing is a great method for reducing the overhead and risks associated with
debugging and recovery from regressive development. One can appreciate the
effectiveness in cost and development capabilities using a consortium model to produce
software, in that it draws on the resources of individuals from the possibility of different
fields and different perspectives. White box testing is not the only way to test software,
so there is always an avenue to continue testing the Evergreen system; with testing
implemented as modular unit tests the risk of error decreases as individual tests grow to
be more simplistic, and the combined effort of the tests is what truly brings the desired
results. As work continues the most important notion in developing test cases is to keep
the tests modular and design each test to analyze very specific entities to maintain

effectiveness.

Appendix A

Source Code

Test cases:

Test suite includes additions as well as existing test cases
00-OpenlLS.t

#lusr/bin/perl

use Test::More tests => 4;

BEGIN {

use_ok('OpenlLS');

use_ok('OpenILS::Const');
use_ok(‘OpenILS::Event'),
use_ok('OpenILS::Perm');

diag("Testing OpenILS $OpenILS::VERSION, Perl §], $2X");

01-OpenILS-Application.t
#lusr/bin/perl
use Test::More tests => 13;

BEGIN {
use_ok('OpenILS:: Application’);

30

use_ok('OpeniLS:
use_ok('OpenlILS:
use_ok('‘OpenlLS:
use_ok('OpenlLS:
use_ok('OpenlLS:
use_ok('OpenILS:
use_ok('OpenILS:
use_ok('OpenlLS:
use_ok('‘OpenILS:
use_ok('OpenILS:
use_ok('OpenlLS:
use_ok('‘OpenlLS:

:Application:
:Application:
:Application:
:Application:
:Application::
:Application:
:Application::
:Application:
:Application:
:Application:
:Application::
:Application:

:AppUtils');
:Booking');
:Collections');
:Fielder');

Ingest');

:Penalty');

PermaCrud');

:Reporter’);
:ResolverResolver');

:Serial’);

SuperCat');

:Vandelay' };

02-OpenlLS-Application-Acg.t

#lusr/bin/perl

use Test::More tests => 11;

BEGIN |

use_ok('OpenILS::Application::Acq’);

use_ok('OpenILS::
use_ok{ 'OpenlILS::
use_ok('OpenlLS::
use_ok('OpenILS::
use_ok{ 'OpenlILS::
use_ok('OpenlILS::
use_ok('OpenILS::

Application
Application
Application
Application
Application
Application
Application

:Acq::Claims ');
:Acq::EDI 9;
:Acq::EDI %);
:Acq::Financials ');
:Acq::Invoice ');
:Acq::Lineitem);
:Acq::Order);

31

use_ok('OpenILS:: Application:: Acq::Picklist ');
use_ok('OpenILS::Application::Acq::Provider);
use_ok('OpenILS::Application::Acq::Search ');

03-OpenILS-Application-Actor.t
#lusr/bin/perl

use Test::More tests => 6;

BEGIN {

use_ok('OpenlLS::Application::Actor’);

use_ok('OpenILS::Application::Actor::ClosedDates');
use_ok('OpenILS::Application:;:Actor::Container’);
use_ok('OpenILS::Application::Actor::Friends');
use_ok('OpenlLS::Application:: Actor::Stage');
use_ok('OpenILS::Application::Actor::UserGroups');
04-OpenlILS-Application-Cat.t

#lusr/bin/perl

use Test::More tests => 6;

BEGIN {
use_ok('OpenlILS::Application::Cat’);

32

use_ok('OpenlLS:
use_ok(‘OpenILS:
use_ok('OpenlILS:
use_ok('‘OpenILS:
use_ok('OpenlLS:

:Application
:Application
:Application
:Application
:Application

::Cat::AssetCommon');
:Cat::AuthCommon');
::Cat::Authority');
::Cat::BibCommon');

::Cat::Merge');

05-OpenILS-Application-Circ.t

#lusr/bin/perl

use Test::More tests => 13;

BEGIN {

use_ok('OpenlLS::Application::Circ');

use_ok{ 'OpenlILS:
use_ok('OpenlLS:
use_ok('OpenILS:
use_ok{ 'OpenlILS:
use_ok{ "OpenlILS:
use_ok('OpenILS:
use_ok('OpenlLS:
use_ok("OpenlILS:
use_ok('OpenlILS:
use_ok('OpenlLS:
use_ok('OpenlLS:
use_ok('OpenlILS:

:Application:
:Application:
:Application:
:Application:
:Application:
:Application:
:Application::
:Application:
:Application:
:Application:
:Application::
:Application:

:Cire:
:Circ:
:Circ:
:Circ:
:Circ:
:Circ:
Circ
:Circ:
:Circ::
:Circ::
:Circ::

:Circ::

:CircCommeon');
:Circulate');
:CopyLocations');
:CreditCard');
:HoldNotify');
:Holds');
::Money');
:NonCat');

ScriptBuilder’);
StatCat');
Survey');

Transit');

33

06 -OpenILS-Application-Search.t

#lusr/bin/perl

use Test::More tests => 8;

BEGIN {

use_ok('OpenILS::Application::

use_ok('OpenlLS:
use_ok('OpenlLS:
use_ok('OpenILS:
use_ok('OpenILS:
use_ok(‘OpenlLS:
use_ok('OpenlILS:
use_ok{ 'OpenlLS:

:Application:
:Application:
:Application::
:Application:
:Application:
:Application:
:Application::

:Search::

:Search::

Search::

:Search::
:Search::

:Search::

Search::

07-OpenlLS-Application-Storage.t

#lusr/bin/perl

use Test::More tests => 3;

BEGIN {

Search');

AddedContent’);
Authority');
Biblio');
CNBrowse');
Serial’);

23950);

Zips');

use_ok('OpenlILS::Application::Storage');

use_ok('OpenILS::Application::Storage::FTS');

use_ok('OpenILS::Application::Storage::QueryParser’);

34

08-OpenlLS-Application-Storage-CDBL.t

#!usr/bin/perl

use Test::More tests => 13;

BEGIN {

use_ok('OpenILS::Application::Storage::CDBI');

use_ok('OpenlILS:
use_ok(‘OpenlLS:
use_ok('‘OpenILS:
use_ok('OpenlILS:
use_ok('OpenILS:
use_ok('OpenlLS:
use_ok('OpenILS:

use_ok{ 'OpenILS

:Application::
:Application::
:Application::
:Application::
:Application::
:Application::
:Application::
::Application::
use_ok('OpenlLS:
use_ok('OpenlLS:
use_ok('OpenlLS:
use_ok('OpenlILS:

:Application::
:Application::
:Application::
:Application::

Storage::
Storage::
Storage:
Storage:
Storage:
Storage::
Storage:
Storage::
Storage::
Storage:
Storage:

Storage:

CDBL
CDBIL:
:CDBI:
:CDBI:
:CDBIL:
CDBIL
:CDBI:
CDBI:

CDBI

09-OpenlILS-Application-Storage-Driver.t

#lusr/bin/perl

:action');
:actor’);
:asset');
:authority');
:biblio’);
:booking');
:config');
:container');
::metabib');
:CDBI:
:CDBL
:CDBI:

money');

:permission’);

:serial');

35

use Test::More tests => 3;

use_ok('OpenILS::Application::Storage::Driver::Pg::cdbi');
use_ok('OpenILS:: Application::Storage::Driver::Pg::fts' };
use_ok('OpenILS::Application::Storage::Driver::Pg::QueryParser');

These modules are not meant to be loaded as a normal Perl module
use_ok('OpenlLS::Application::Storage::Driver::Pg’);

use_ok('OpenlLS::Application::Storage::Driver::Pg::dbi’);

use_ok('OpenlLS::Application::Storage::Driver::Pg::storage’);

10-OpenlLS-Application-Storage-Publisher.t

#!usr/bin/perl

use Test::More tests => 11;

BEGIN {
use_ok('OpenILS:: Application::Storage::Publisher');

use_ok('OpenILS::Application::Storage::Publisher::action’);
use_ok('OpenILS::Application::Storage::Publisher::actor’);
use_ok('OpenILS::Application::Storage::Publisher::asset');
use_ok('OpenILS:: Application;:Storage::Publisher::authority');
use_ok('OpenlLS::Application::Storage::Publisher::biblio');
use_ok('OpenILS::Application::Storage::Publisher::config');
use_ok('OpenlLS::Application::Storage::Publisher::container');
use_ok('OpenILS:: Application::Storage::Publisher::metabib’);
use_ok('OpenlILS:: Application::Storage::Publisher::money');
use_ok('OpenILS::Application::Storage::Publisher::permission’ };

36

11-OpenlLS-Reporter.t

#!usr/bin/perl

use Test::More tests => 2;

use_ok('OpenILS::Reporter::Proxy’);
use_ok('OpenILS::Reporter::SQLBuilder');

12-OpenILS-SIP.t

#lusr/bin/perl

use Test::More tests => 8;

BEGIN {

use_ok('OpenILS::SIP');

use_ok('OpenILS::SIP::Item’);

use_ok('OpenILS::SIP::Msg');

use_ok('OpenlLS::SIP::Patron');

use_ok('OpenlILS::SIP::Transaction’);

use_ok('OpenILS::SIP::Transaction::Checkin');
use_ok('OpenILS::SIP::Transaction::Checkout');
use_ok('OpenILS::SIP::Transaction::Renew');

13-OpenILS-Template.t

37

#lusr/bin/perl
use Test::More tests => 3;
use_ok('OpenILS::Template::Plugin::Unicode');

use_ok('OpenILS:: Template::Plugin:: WebSession');
use_ok('OpenILS::Template::Plugin:: WebUltils');

14-OpenILS-Utils.

#lusr/bin/perl

t

use Test::More tests => 20,

use_ok{ 'OpenlLS::
use_ok{ 'OpenILS::
use_ok('OpenILS:
use_ok('OpenlLS:
use_ok('OpenlILS:
use_ok(‘OpenlILS::
use_ok('OpenILS:
use_ok(‘OpenlLS:
use_ok('OpenlLS::
use_ok('OpenlLS:
use_ok('OpenILS:
use_ok('OpenlILS:
use_ok('OpenlILS:
use_ok('‘OpenlILS:
use_ok('OpenlILS:
use_ok('‘OpenlILS::
use_ok('‘OpenlLS:
use_ok('OpenlILS:

‘Utils:
‘Utils:
‘Utils:

:Utils:
:Utils:
:Utils
:Utils:
:Utils:
:Utils:
:Utils:
:Utils:
:Utils:

Utils::
Utils:

Utils:

Utils

‘Utils::
‘Utils:

Configure');

:Cronscript');
:CStoreEditor’);
:Editor’);
:Fieldmapper');
:ISBN');
:Lockfile');
:MFHDParser');
:MFHD');
:ModsParser');
:Normalize’);
:OfflineStore’);
:Penalty');
:PermitHold’);
:RemoteAccount');

::ScriptRunner’);

SpiderMonkey');

:ZClient');

LP 800269 - Test MFHD holdings for records that only contain a caption field
my $co_marc = MARC::Record->new();
$co_marc->append_fields(
MARC: Field->new('853"",",
B =>"1,
a'=>v.),
'b'=> [no.]",
)
)
my $co_mthd = MFHD->new($co_marc);

my @comp_holdings = $co_mfhd->get_compressed_holdings($co_mfhd->field('853");
is(@comp_holdings, 0, "Compressed holdings for an MFHD record that only has a caption");

my @decomp_holdings = $co_mfhd->get_decompressed_holdings($co_mfhd->field('853");
is{@decomp_holdings, 0, "Decompressed holdings for an MFHD record that only has a caption");

15-OpeniLS-WWW.t

#lusr/bin/perl

use Test::More tests => 10;

use_ok('OpenILS:: WWW::BadDebt');
use_ok('OpenILS::WWW: EGWeb'),
use_ok('OpenILS::WWW::Exporter');
use_ok('OpenILS:: WWW::IDL2js’);
use_ok('OpenILS;: WWW::PasswordReset');
use_ok('OpenlLS::WWW::Proxy');
use_ok('OpenILS::WWW::Redirect');
39

use_ok('OpenILS:: WWW::TemplateBatchBibUpdate');
use_ok('OpenILS:: WWW::Vandelay');
use_ok('‘OpenILS:: WWW:: XMLRPCGateway');

16-OpenILS-WWW-AddedContent.t

#lust/bin/perl

use Test::More tests => 5;

BEGIN {
use_ok('OpenILS:: WWW::AddedContent');

use_ok('OpenILS::WWW::AddedContent:: Amazon');
use_ok('OpenILS:: WWW::AddedContent::ContentCafe');
use_ok('OpenILS:: WWW::AddedContent::OpenL.ibrary');
use_ok('OpenlLS:: WWW::AddedContent::Syndetic’);

17-OpenILS-WWW-Reporter.t

#!usr/bin/perl

use Test::More tests => 2;

BEGIN {
use_ok('OpenILS::WWW::Reporter');
}
use_ok('OpenlILS:: WWW::Reporter::transforms’);

40

18-OpenILS-WWW-SuperCat.t

#lusr/bin/perl

use Test::More tests => 2;

BEGIN {

use_ok('OpenILS:: WWW::SuperCat'),
}
use_ok('OpenILS::WWW::SuperCat::Feed');

19-1-1-OpenILS-Application-Acq-Claims-Unit.t

#lusr/bin/perl

use Test::More qw(no_plan) ;
use OpenlILS:: Application::Acq::Claims;
use OpenlLS::Utils::Cronscript;

my %defaults = (

'min=i' =>0, # keys are Getopt::Long style options
‘max=i' =>999, # values are default values

‘user=s' =>'admin’,

‘password=s’' => ",

‘nolockfile’ => 1,

my $core = OpenlILS::Utils::Cronscript->new{(\%defaults);
my $opts = $core->MyGetOptions();
$core->bootstrap;

41

my @subs = (claim_ready_items, claim_item, claim_lineitem_detail,

get_claim_voucher_by_lid,);

use_ok('OpenILS::Application::Acq::Claims’, @subs);
OpenlLS:: Application:: Acq::Claims::claim_item();

19-1-2-OpenlILS-Applicatioin-Acq-Financials.t

#lusr/bin/perl

use Test::More qw(no_plan} ;
use OpenILS::Application::Acq::Financials;
use OpenILS::Utils::Cronscript;

my %defaults = (

'min=i' =>0, # keys are Getopt::Long style options
'max=i' =>999, # values are default values

‘user=s' =>'admin’,

‘password=s' =>",

‘nolockfile’ => 1,

my $core = OpenlLS:;Utils::Cronscript->new(\%defaults);
my $opts = Score->MyGetOptions(};

$core->bootstrap;
my @subs = (create_funding_source, delete_funding_source);
use_ok{ 'OpenILS::Application::Acq::Claims’, @subs);

OpenILS::Application::Acq::Claims::claim_item();

42

19-1-OpenlLS-Application-Unit.t

#tpert -T

use Test::More qw(no_plan) ;

use OpenlLS::Application::Acq;

my @subs = (new);
use_ok('OpenILS::Perm’, @subs);

19-OpenlILS-Application-Unit.t

#lusr/bin/perl

use Test::More gw(no_plan) ;

use OpenSRF::System;

use OpenILS::Application;

use OpenSRF::Application;

use OpenSREF::Utils::SettingsClient;
use OpenlLS::Utils::Cronscript

my %defaults = (

'min=i' =>0, # keys are Getopt::Long style options
‘max=i' =>999, # values are default values
'user=s' =>'admin’,
‘password=s' =>",

‘nolockfile' => 1,

my $core = OpenlLS::Utils::Cronscript->new(\%defaults);
43

my $opts = $core->MyGetOptions();
$core->bootstrap;

my @subs = (ils_version, get_idl_file, register_method, authoritative_wrapper);

use_ok ('OpenlILS::Application’ , @subs);

is(OpenlILS::Application::ils_version(), 2-1-1', "Testing version");

my $idl = OpenlILS::Application::get_idl_file();

20-OpenILS-Const-Unit.t

#lusr/bin/per!

use Test::More qw(no_plan) ;

use OpenILS::Const;

my @subs = (econst);
use_ok('OpenlILS::Const');
21-OpenILS-Event-Unit.t
#lusr/bin/perl

use Test::More qw(no_plan) ;
use OpenILS::Event;

use OpenILS::Utils::Cronscript;

my %defaults = (

‘min=i' =>0, # keys are Getopt::Long style options
'‘max=i' =>0899, # values are default values

‘user=s' =>‘admin’,

‘password=s' => ",

‘nolockfile' => 1,

my $core = OpenILS::Utils::Cronscript->new(\%defaults);
my $opts = $core->MyGetOptions();

$core->bootstrap;

my @subs = (new, _load_events);

use_ok{ 'OpenILS::Event’, @subs);
22-OpenlLS-Perm-Unit.t

#!usr/bin/perl

use Test::More qw(no_plan) ;

use OpenlLS::Perm;

my @subs = (new);

use_ok{ 'OpenILS::Perm’', @subs);

23-OpenlLS-SIP-Unit.t

#tusr/bin/perl

use Test::More qw(no_plan) ;
use OpenlLS::SIP;

45

my @subs = (new, fetch_session, verify_session,
editor, config, get_option_value,
make_editor, clean_text, shortname_from_id,
patron_barcode_from_id, format_date, login,
find_patron, find_item, institution, institution_id,
supports, check_inst_id, to_bool, checkout_ok,
checkin_ok, renew_ok, status_update_ok,
offline_ok, checkout, checkin, end_patron_session,

renew,);

use_ok('OpenlLS::SIP', @subs),

Results of of tests:

Dpen-I1

o

=

1254 E nirrizali a2 value 1m roRCatend
peens ILS S5 oy eds FlibfOponlt. 5 U0zl

T
£
4
[
3
3
v
X,
T
1

T

E I A .
nil % Apprl ¢ ’ ozl s~z t L WrinLiaias salue in
tring At 1 STHE ! rgraon-1Ii ilsfare/peariacas /1 b/ Open it
i Tzepe 1
Il Bl > 3= 1 NELALS
apgily

bet g [

o

#et g

boeeee beoat 0 QA er e

47

Appendix B
Test::More Synopsis

use Test::More tests => 23;
#or
use Test:More skip_all => $reason;
#or
use Test:More;, # see done_testing()

BEGIN { use_ok('Some:Module'); }
require_ok(‘Some::Module');

Various ways to say "ok"
ok(Sgot eq Sexpected, $test_name);

is (Sgot, Sexpected, Stest_name);
isnt(Sgot, Sexpected, Stest_name);

Rather than print STDERR "# here's what went wroagin”
diag("here’s what went wrong");

like ($got, griexpected/, Stest_name);
unlike($got, qriexpected/, $test_name);

cmp_ok(Sgot, "=, Sexpected, Stest_name);
is_deeply(Sgot_complex_structure, $expected_complex_structure, Stest_name);

SKIP: {
skip Swhy, Show_many unless $have_some_[eature;

ok(foo{), Stwest_name);
is{ foo(42), 23, Stest_name);
|5

TODO: {
local $TODO = $why;

ok(foo(), Stest_name);
is(foo(42), 23, Stest_name };
k

can_ok(3module, @methods);
isa_ok($object, $class);

pass{Stest_name);
fail(Stest_name);

BAIL_OUT(Swhy);

UNIMPLEMENTED!!!
my @status = Test::More::status;

CPAN Synopsis — Test::More

48

Appendix C

Devel::Cover Synopsis

To get coverage for an uninstalled module:

cover -test

or

cover -delete

HARNESS_PERL_SWITCHES=-MDevel::Cover make test
cover

To get coverage for an uninstalled module which uses Module::Build (0.26 or later):

/Build testcover

If the module does not use the t/*.t framework:

PERL50OPT=-MDevel::Cover make test

If you want to get coverage for a program:

perl -MDevel::Cover yourprog args
cover

perl -MDevel::Cover=-db,cover_db,-coverage,statement,time yourprog args

CPAN Synopsis — Devel::Cover

49

Appendix D

Coverage Reports

Database:/home/opensri/Evergreen-ILS-2.1.1/Open-
ILS/src/perimods/cover_db

sy st [brafcon] su/[tim

mtin|d|b|e|al
5130.0/50.0(75.0128.260!

blib/lib/Open!LS/Application.pm 6
blib/lib/OpenlLS/Application/Acg.om '1.004 n/a n/a [100]0.2

: 9
blib/lib/OpenlLS/Application/Aca/Claims.pm 2071 0.0 0.066.7| 0.0 |16
blib/lib/OpenlLS/Application/Acg/EDI.pm 1071 0.9 0.0146.9 0.7 | 7.6

- B & | | | [
[plib/lib/OpenlLS/Agplication/Acq/EDI/T ranslator.p “éb"‘- 0.0 0.0 .41 0.5 |16.2

m i ([REE= ¥
p— a! :] 5

L o I PR,] ST Sy =i S Q BE=E - -
blib/lib/OpeniL.S/Application/Acg/Financials.om [7.3/ 0.0 0.0125.6/0.0 | 4.9
P | B | |
blib/lib/OpenlL S/Application/Acg/Invoice.pm 9.2 0.C _gm‘;ov 0.0| 6.

L

bilb/i/OpenlL S/Application/Acq/Lineitem.pm [12:2 0 0,043/ 0.0 | 86
.00 0.0117.6 0.0 3.7

o o 7

blib/lib/OpenlL S/Application/Acg/Order.pm

blit/lib/OpenlLS/Application/Aca/Picklistom 25,0 0.0/ 0.0/61.3 0.6 [18:8

blib/lib/Open|LS/Application/Aca/Providerpm (37.5 0.0l 0.0162.5/ 0.0 [27:
blib/lib/OpeniLS/Application/Aca/Search.om 14.8 0.0 0.0/48.1 0.0 [10.8

50

blib/lib/OpenlL.S/Application/Actor.pm

blib/lib/Openl|LS/Application/Actor/ClosedDates.p [25.4
m

blib/lib/OpenlILS/Application/Actor/Container.pm

blib/lib/OpenlLS/Application/Actor/Friends.pm
blib/lib/OpenlL S/Application/Actor/Stage.pm

blib/lib/OpenlLS/Application/Actor/UserGroups.p
m

blib/lib/OpenlL.S/Application/AppUtils.pm

blib/lib/OpeniLS/Application/Cat.pm
blib/lib/OpenlILS/Application/Cat/AssetCommon.p
m

Dblib/lib/OpenilL S/Application/Cat/AuthCommon.p

m

—

:blib/Iib/OpenlLS/ADDIication/Cat/Authoritv.m
blib/lib/OpeniLS/Application/Cat/BibCommon.pm
blib/lib/OpeniL S/Application/Cat/Merge.pm
blib/lib/OpeniL.S/Application/Circ.pm | 0.0 0.0144.6
blib/lib/OpenlLS/Application/Circ/CircCommon.pm 00 “ 7 ;
blib/lib/OpeniLS/Application/Circ/Circulate.pm 9 0.0 0.027.C
blib/lib/OpenlL S/Application/Circ/CopyLocations.p[28.7).
m .

blib/lib/OpenlLS/Application/Circ/CreditCard.pm
blib/lib/OpenlLS/Application/Circ/HoldNotify.pm

51

blib/lib/OpenlLS/Application/Circ/Holds.pm

|
iblib/lib/OpeniL.S/Application/Circ/Money.pm
blib/lib/OpeniL S/Application/Circ/NonCat.pm

blib/lib/OpeniL S/Application/Circ/ScriptBuilder.om [15:8] 0.0] 0.0/40.0

blib/lib/OpenlLS/Application/Circ/StaiCat.pm

Iblib/lib/OpenlLS/Application/Circ/Survey.pm

blib/lib/OpenlLS/Application/Circ/Transit.pm
blib/lib/OpenlLS/Application/Search.pm

t.pm

blib/Alib/OpenlLS/Application/Search/AddedConten

blib/lib/OpenllL S/Application/Search/Authority.pm

biib/lib/OpenlL S/Application/Search/Biblio.pm

blib/lib/OpeniL S/Application/Search/CNBrowse.p [44:4[70.9

m

I
Iblib/lib/OpenlLS/Application/Search/Serial.pm

blib/lib/OpenlLS/Application/Search/Z3950.pm
biib/lib/OpeniLS/Application/Search/Zips.pm

blib/lib/OpenllL S/Application/Storage/CDBI.pm

pm

blib/lib/OpenlLS/Application/Storage/CDBl/actor.p|

m

blib/lib/OpenliLS/Application/Storage/CDBl/asset.
bm

52

blib/lib/OpenlLS/Application/Storage/CDBI/action. |1

:.ln/a n/a

.| nfa n/a

n/a n/a

100.
0l

100.

blib/lib/OpenlL.S/Application/Storage/CDBl/authori|100. n/a' n/a 100.| 0.0 |100.
ty.pm 0 0 0
blib/lib/OpenlLS/Application/Storage/CDBl/biblio. (1004n/a n/a {100, 0.0 [100.
pM 0 0 0
blib/lib/Open|LS/Application/Storage/CDBI/bookin (100. n/a n/a {100, 0.0 100.
'g.pm 0 0) 0
blib/lib/Openil.S/Application/Storage/CDBl/config. (100, n/a n/a |100.| 0.0 100
pm o | |9 | o
blib/lib/OpenlLS/Application/Storage/CDBl/contai (100, n/a | n/a |{100.| 0.0 |100.
ner.pom 0] g] 0
blib/lib/OpenlILS/Application/Storage/CDBI/metabi{100.| n/a | n/a |100. 0.0 |100.
b.om 0 o) 0
blib/lib/OpeniLS/Application/Storage/CDBIl/money [100. n/a| n/a |100. 0.0 |100.
.pm 0 0 0
blib/lib/OpeniL S/Application/Storage/CDBI/permis [100.| n/a | n/a [10@4 0.0 |100.
sion.pm 0 0 0,
blib/lib/Openil S/Application/Storage/CDBl/serial. (100, n/a n/a |100} 0.0 |100.
pm 0 0 0
blib/lib/OpenlL S/Application/Storage/Driver/Pg/Quf 7.9 0.0 0.0[24.1/ 0.1 | 6.4
eryParser.pm I it |
blib/lib/OpeniLS/Application/Storage/Driver/Palcd [25. 25
bi.om [|
blib/lib/OpeniL S/Application/Storage/Driver/Pa/fts.[10:3] 0.0/ 0.0/40.0| 3.2 [17:1
pm a2 |

53

blibAib/OpenilLS/Application/Storage/QueryParser
om

blib/lib/OpenlILS/Const.pm
blib/lib/OpenlL.S/Event.pm
blib/lib/OpeniLS/Perm.pm
blib/lib/OpenILS/Reporter/Proxy.pm

bliblib/OpeniLS/Reporter/SQLBuilder.om
blib/Alib/OpeniLS/SIP.pm

blib/lib/OpenlLS/SIP/tem.pm
blib/lib/OpeniLS/SIP/Msg.pm
blib/lib/OpenlLS/SiP/Patron.pm
blib/lib/Openil S/SIP/Transaction.pm

blib/lib/OpenlLS/SIP/Transaction/Checkin.pm
blib/lib/Openl|LS/SIP/Transaction/Checkout.pm

blib/lib/OQenILS/SlP/'I' ransaction/Renew.pm

blib/lib/OpenlLS/Template/Plugin/Unicode.pm
blib/lib/Open|L.S/T emplate/PIugin/WebSession.Q

m

—

blib/lib/OpenlLS/Template/Plugin/WebUtils.pm
blib/lib/OpenlLS/Utils/CStoreEditor.pm

blib/lib/OpenlLS/Utils/Editor.om
blib/lib/OpenlLS/Utils/Fieldmapper.pm

blib/lib/OpenlLS/Utils/MFHD.pom
blib/lib/Open|LS/Utils/MFHD/Caption.pm
54

8.4

311 11 0.1

96.0/n/a n/a 87.5

16 93.9

289 g,q 00714 3.6 |21 :;1'
88.9 n/a| n/a 88.9 0.9 88.9
1 0.0 0.073.3 4.7 [35.5

| 0.0/ 9.7 0.1 51

3.8 0.0) 0.040.4/ 0.4 [20.3
17.3 0.0/ 0.031.6/ 0.0 [13.1

blib/lib/Openll.S/Utils/MFHD/Date.pm
blib/lib/OpeniLS/Utils/MFHD/Holding.pm

blib/lib/OpenlILS/Utils/MFHDParser.pm
blib/lib/OpenlL S/Utils/ModsParser.pm

blib/lib/OpenlLS/Utils/Penalty.pm
blib/lib/OpenlLS/Utils/PermitiHold.pm
blib/lib/OpenllL S/Utils/RemoteAccount.pm
blib/lib/OpenILS/Utils/ScriptRunner.pm
blib/lib/OpenlL S/Utils/ZClient.pm
blib/lib/OpenlLS/WWW/AddedContent.pom

blib/lib/OpenIL S/WWW/AddedContent/Amazon.p (49.

s 3

E" |
3

lib/lib/OpenILS/WWW/AddedContent/ContentCa [16.7] 0.0

blib/lib/OpenILS/WWW/AddedContent/OpenLibra [17. Al

I[g.gm

blib/lib/OpenILS/WWW/AddedContent/Syndetic.p (20. B

m
blib/lib/OpenlL S/WWW/BadDebt.pm
Eblib/lib/OpenIL_SNVWW/E_GWeb.Qm

blib/lib/OpeniLS/WWW/Exporter.pm

:blibllib/OgenILSNVWW/IDL2‘|s.gm
blib/lib/OpenlLS/WWW)/PasswordReset.pm

blib/lib/OpenILS/MWWW/Proxy.pm

55

blib/lib/OpenlLS/WWW/Redirect.pm
blib/lib/OpenlLS/WWW/Reporter.pm
blib/lib/OpenlL S/WWW/SuperCat.pm
blib/lib/OpenILS/MWW/SuperCat/Feed.pm 0.0 0.0t
blib/lib/OpeniLS/WWW/TemplateBatchBibUpdate [46.6/ 0.0 0.0/84.8
om .
blib/lib/OpeniLS/WWW/Vandelay.pom
blib/lib/Openit SIWWW/XMLRBRPCGateway.pm
Total

36

Appendix E

Coverage Summary

Application.pm Coverage Report

File Coverage

File: blib/lib/OpenILS/Application.pm

Coverage: 60.6%
line|stmt|bran cond|sub| time code
] ; 3 { — package OpeniILS: :Application}
2“- 10 10 15760 use OpenSRF: :Application;
10 1822532
10| 9 |
i | LQ] 579 | use UNIVERSAL::require;
10] 73
10 164
4 10 10 312 |use base gw/OpenSRF: :Application/;
10 53
10! ‘ 725
=5
6 sub ils_version {
T ' ' # version format is ny-y-z", for example
i »2-0-0" for Evergreen 2.0.0
8 # For branches, format is "x-y"
FomiEil 1233065| return '2-1-1%
10 '1 }
=8 I | I I
12 1 i _PACKAGE;_— >regisi:er_method {

57

api_name => 'opensrf.open-

ils.system.ils_version!',

api_level => 1,

method => 'ils_version’',

|

18 - __PACKAGE__ ->register_method{
19 o api_name => 'opensrf.open-
; : ils.fetch_idl.file',
2(;h 3 api_level => 1,
2.:1: method => 'get_idl_file",
F7)) - S
"ﬁ_ﬁrﬁ sub get_idl_file {
i;l} 10 902 use OpenSRF::Utils::SettingsClient;
o 53
B0 108
0 return OpenSRF::Utils::SettingsClient-
>new->config_value('IDL');
}
sub register_method {
2092 my $class = shift;]
2047 my %args = @_;]
2998 my %dup_args = %args;
4305 $class = ref($class) || $class;
2250 $args{package} ||= $class;
8308 __PACKAGE__->SUPER: :register_method (

58

37

BR

30

,40...

41

42

157

43

157

157

45

5

46

47

48

49

50

151

52

53

55

378
307

363

293

345

1653

%args);

if (exists($dup;args{éuthoritative}) and

Sdup_args{authoritative}) {

(my $hame = $dup_args{api_name}} =~

s/$/.authoritative/o;
if ($name ne $dup_args{api_name})

S$dup_args{real_api_name} =
Sdup_args{api_name};

Sdup_args{method} =
‘authoritative_wrapper';

Sdup_args{api_name} = S$name;

sdup_args{package} =
__PACKAGE__;

__PACKAGE__-

>SUPER: :register_method(%dup_args);

}

| sub authoritative_wrapper {

if
{180penlIlLS::Utils::CStoreEditor: :_loaded)
die "Couldn't load
OpenlIlLS::Utils::CStoreEditor!" unless

- 'OpenILS::Utils::CStoreEditor'->use;

}

59

my $client = shift;

my Gargs = €@_;

my Smethod = $self->method_lookup({S$self-

>{real_api_name}};

die unless S$method;

local
$0penILS::Utils::CStoreEditor: :always_xact =
iy;

sclient->respond({ $_) for ($method-

>run{@args));

OpenILS: :Utils: :CStoreEditor-

>flush_forced_xacts();

return undef;

Bibliography
[1] Raymond, Eric. "The Cathedral And The Bazaar.” Knowledge, Technology & Policy 12.3 (1999):

23. Academic Search Complete. Web. 14 Mar. 2012.

[2] Weber, Jonathan. "Evergreen: Your Homegrown Ils.” Library Journal 131.20 (2006): 38-
41. Academic Search Complete. Web. 14 Mar. 2012.

[3]1 Kenney, Brian. "Georgia's 250 PINES Libraries To Create An ILS Their Way." Library
Journal 129.14 (2004): 28. Academic Search Complete. Web. 14 Mar, 2012.

[4] Fourment, Mathieu, and Michael R. Gillings. “A Comparison Of Common Programming Languages
Used In Bioinformatics." BMC Bioinformatics 9.(2008): 1-9.Academic Search Complete. Web. 17
Mar, 2012.

[5] Haller. “White-Box Testing for Database-Driven Applications: A Requirements Analysis.”
In Proceedings of the Second International Workshop on Testing Database Systems (DBTest '09).
ACM, Article 13, 6 pages. DOI=10.1145/1594156.1594172 Web. 17 Mar. 2012

[6] Schwern, Michael G. “Test::More.” CPAN. Version 0.98. N.p., 2008. Web, 17 Mar, 2012
[7]1 Schwem, Michael G. “Test:;Simple.” CPAN. Version 0.98. N.p., 2008. Web. 17 Mar. 2012

[8]) INOUE, SHINIJI, and SHIGERU YAMADA. “Testing-Coverage Dependent Software Reliability
Growth Modeling." International Journal Of Reliability, Quality & Safety Engineering 11.4 (2004):
303-312. Academic Search Complete. Web. 19 Mar. 2012.

[9] Johnson, Paul. “Devel::Cover.” CPAN. Version 0.82. N.p., 2011. Web. 17 Mar. 2012

[10] Phillip G., Armour. "The Business Of Software Testing: Failing To Succeed." Communications Of
The ACM 54.10 (2011): 30-31. Academic Search Complete. Web. 20 Mar. 2012.

[11] Yang, Sharon Q., and Melissa A. Hofmann. "The Next Generation Library Catalog: A Comparative
Study Of The Opacs Of Koha, Evergreen, And Voyager." Information Technology & Libraries 29.3
(2010): 141-150. Academic Search Complete. Web. 20 Mar. 2012.

[12] Members of the Evergreen Project. “OpenSRF.” Evergreen. Georgia Public Library Service, n.d.
Web. 21 Mar. 2012

61

[13]Members of the Evergreen Project. “Installing OpenSRF 2.0.” Evergreen. Georgia Public Library
Service, 28 Sep. 2011. Web. 21 Mar. 2012,

[14] Members of the Evergreen Project. “Readme for Evergreen 2.1.1.” Evergreen. Georgia Public
Library Service, 16 Nov 2011. Web 21 Mar. 2012

[15] Williams, Laurie. “White-Box Testing.” Open Seminar. Open Seminar Project, n.d. Web 21 Mar.
2012

[16] Guru 99 Team. “Black Box Testing.” Guru 99.

Guru 99 Team. n.d. Web 21 Mar. 2012

62

