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1 Introduction and Historical Overview

In 1805 a truly remarkable mathematician was born in Dublin, Ireland. This man eventually

became one of the most influential mathematicians of the 19th century. He was Sir William

Hamilton. This childhood prodigy would have a profound influence on many fields of mathematics

and physical sciences. In this paper his greatest legacy is going to be explored: that of

quaternions. Hamilton believed that his invention of the quaternion; a hypercomplex set of

numbers representing space-time; held the key to the future of mathematical physics. Although

Hamilton's belief in his invention never wavered, it was not until the middle of this century that his

achievement was recognized as having true merit, with the advent of quantum mechanics and

special relativity. Although quaternions hasn't and probably never will become the predominant

mathematical method of physics; his early work and the invention of quaternions influenced and

fostered the modern vectorial calculus we use today. In these and many other fields Hamilton's

works still influence today and most certainly will into the next century.

In order to appreciate the nature of Hamilton's invention we must understand the state of

mathematics, physics, and science as it existed before and during Hamilton's lifetime. In the late

18 th and into the early 19 th centuries' mathematicians became interested in representing "directed

lines of force" in physical problems in some other fashion other than Euclidean geometry. By this

time the concept of a complex number was established and understood by most mathematicians

although it was treated more as a mathematical oddity than a worthwhile pursuit of study. Caspar

Wessel was the first to recognize the use of complex numbers in representing two dimensional

space. Many others also developed this area. These works prompted many to try to extend their

use to three dimensional space. Well before Hamilton ever became interested in this problem no

fewer than ten other mathematicians had tried to find a triplet set and failed to propose a

satisfactory system. Hamilton also attempted this problem and failed. However through this early

work Hamilton for the first time rationalized complex numbers as ordered pairs of real numbers

rather than geometrically. This was very satisfying to the scientific community as many

mathematicians did not like geometric proofs, but preferred algebraic ones. Hamilton thus became

interested in the study of complex numbers and what we would call today as dimensional analysis_
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Around this time Hamilton also devised a general set of equations of motion for multi parameter

systems of motion ( Hamiltonian theory: "On a General Method in Dynamics"). Through this

work and his failure to solve the triplet problem Hamilton began to explore what he called time

development, Basically Hamilton, being a bit of a metaphysicist, believed that time evolution was

an integral, nay indistinguishable part of any system involving motion. This prompted Hamilton to

include time as a component of a directed line of force system of motion and in effect he began to

look for a four dimensional system instead of a triplet algebra. On October 16, 1843 Hamilton

solved this problem and stated the equation that forms the basis of his theory: i2 j2 = k2 = ijk = -1.

So momenta! was this flash of brilliance the he felt compelled to carve this equation on the

Brougham Bridge. Hamilton was a prodigious writer and wrote everywhere on anything suitable,

in this case while walking with his wife on the bridge and a pocket knife was handy

Hamilton quickly developed a paper on his discovery and presented it to the Royal Irish Society

during the first general meeting of the session that November. Hamilton however took ten years to

publish a book on the subject but he submitted many papers to journals advocating the importance

of his discovery. "Lecture on Quaternions" appeared in 1853 and became his first true

mathematical book. This 500+ page book was well received but sales were moderate. However

mathematicians did not become zealot believers in his quaternion theory due to the fact that

"Lecture" is long, difficult, and included many complicated notations and terms representing

various quaternion types and operations. The only other mathematician that truly shared

Hamilton's vision of the quatemion future of mathematics was Peter Tait. Tait was a Scottish

classmate of Maxwell at Edinburgh University. He ordered Hamilton's book in 1858 only as the

title caught his eye in a publisher's book list. Tait proceeded to go through the first six chapters

and asked Thomas Andrews to write Hamilton asking if Tait could correspond with him. Tait's

first letter to Hamilton was a flattering introduction to Hamilton, however in the letter Tait claimed

that he got through most of the book easily and quickly. Hamilton did not really believe this claim

but he returned the letter. This became the beginning of a correspondence that lasted for the rest of

Hamilton's life. Through this interaction Hamilton came to recognize Tait's mastery of the subject

and Tait became a student and contemporary in the subject of quaternions. In fact Tait became

the most influential promoter of quaternions of the late 19 th century.
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Although Hamilton still worked on other areas of study and ran the Dunsink Observatory, he

believed that quaternions were important enough that he devoted 22 years of his life until his death

in 1865 on the subject. The majority of this labour was devoted to a second book meant to be a

practical guide on quaternions use. Tait was also writing a book on the subject but since he used

unpublished results given to him by Hamilton he asked permission to publish. Hamilton agreed as

long as Tait waited for him to publish his unfinished book. Tait followed his mentor's request and

after Hamilton's son published "Elements of Quaternions" in 1866 posthumously, Tait published

his "Treatise on Quaternions". Although Hamilton intended this second book to be a guide it was

longer than "Lectures" and was unfinished. Tait's book however is clear, concise, and complete

and thus became the actual guide on quaternions to which most interested scientists both then and

now refer.

During the last half of Hamilton's life, and to the turn of the century, the groundwork that leads

us to modern vector calculus was being laid. Grassmann, Gibbs and Heaviside were developing

results, and notations (some of it borrowed from Hamilton) and applying it to problems in

electromagnetism and motion. Maxwell, being a friend of Tait, was introduced to quaternions and

in his famous 1873 paper on electromagnetism; he used his famous results and included quaternion

forms as well. However due to Hamilton slowness of publishing, and the complexity of his works,

quaternions were not recognized as being very practical. The Gibbs-Heaviside forms are easier to

use and appear to be a shortcut to a workable mathematics. It was not until the appearance of

relativity and quantum mechanics that the weakness of the Gibbs-Heaviside system was

recognized. About this time quaternions, as other of Hamilton's mathematical theories, were truly

being looked at as being potentially useful. Some of his results were introduced into the modern

vector system but quaternion forms were not used. The strangeness of the quaternion forms can

not displace the more familiar vector foul's that we rely on today.

Although Hamilton's influence is still being felt in modern theory today, his belief in the

superiority of his quaternions has not been realized. It is important to note that Hamilton did

however create the first algebra that covered three dimensions and in doing so was the first to

abandon an algebraic law (commutativity). This encouraged others to leave the stringent rules and

customs of the past mathematics which led to our modern algebra and calculus. It is possible to
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extract all modem vector calculus from the quatemion theory. In fact modem vectors may be

viewed as what Hamilton called the vector part of a quatemion. Hamilton was also the first to

suggest the notation, use, and operations of the Del operator V, recognizing its importance in the

field of physics. Hamilton also gave us many names and showed the use of many of the

components and operations of vector calculus such as scalar, vector, vector (cross) product, and

the scalar (dot) product. He also showed their important use in solving physical problems. Please

also note that in this paper we will be reverse engineering much of the quatemion theory from the

modem calculus. Thus throughout the work it will be assumed that the reader has some familiarity

with vector calculus. It is to be hoped that the reader will gain some appreciation of the practical

use of the quatemion.
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2 Real Quaternionc zni Rotations

2-1 Definition and Algebra of Quaternions

Through out this work it will be assumed that the reader has some familiarity with vector

calculus. A normal vector (3-vector) may be denoted by A = A i l + A, j + A 3 k where 1, j , k are

the unit vectors in Cartesian coordinates. Let's explore the algebra of quaternions, define the

quaternion as q1 = a + A , where: a is a real number and A is a 3-vector.

Let us also define q 2 = b + 11 as above with b a and À_ 	 .

The sum and difference is as one would expect; the "scalar" parts are operated on separately as

are the "vector" parts:

Sum: ch+q 2 =-(a+Ä)+(b+ )= a+b)+(A+13) 	 2-1-1

Difference: q 1 — q 2 =- (a — b) + (A — 	 2-1-2

The product needs to be looked at. Try finding 4 terms under normal multiplication:

(1 1 44 2 = (a +	 + = ab + af3' +	 + I 3	 2- 1-3

clearly, ail = a03+ B 2 3 B 3 0 and similarly for b)6; .

A film'. for A- 1§ must then be found that makes sense mathematically:

AB = (A l i+ A 2 3 + A 3 0(B i i+ B2 3 + B 30

= i 2 A 1 B 1 + j 2 A2 B 2 +k2 A 3 B 3 -+(jkA2 + k3A 3 B 2 )
	

2-1-4

+(kIA 3 B 1 +ilcA 1B 3 )+03A 1 B 2 +ijA 2 B 1 )
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Following Hamilton; define: 1
	 =k = -

j2 = -1 jk =1 = 	 2-1-5

— 1
	 = —ki

So

1 B 1 + A 2 B 2 + A 3 B 3 + 4A2 B3 - A 3 B 2 ) 	
2-1-6

+ 3(A 3 13 1 — A 1 B 3 + f4A 1 B 2 - A 2 BO

Clearly the product of A and ff3 must be AB = -(A o)+A x ii This is known as the

Hamiltonian Product and it is very important in quatemion algebra.

So- a quatemion is defmed as ch = a + = a + A l t + A, + A 3k and makes sense

mathematically under the Hamiltonian product. Three identities of the Hamiltonian product are

shown below:

AA = 	 + x A = -(A 3 2 +A 2 2 +A 2 )= _1A 2
	

2-1-7

If his .a unit vector, ñ 2 = —T 	 2-1-8

tA1 = -A0 1A+Áxf3 43 0A.+txiC
=-2/X011+Axt-Axt

=-2AoB
1

Al 0 B = - —(AB-+BA)
2

2-1-9a
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AB-BA=-A0B+AxB+B.A-BxA

=-AxB 2-1-9b 
1,,...A'x B = - — 1,AB - BA)
2  

One other useful vector identity is:

= fl 2 A'  

= 	 —n(nA)

= 	 0 + x ;60

= ,(A 0 1'01'1 + 	 x ft)

Aik01011+(—(Äxii)ofi+iix(ikxii))

-=- (À- 0 	 + n x 	 x n)
=0;001+fixÄxii

2-1-10

Note: 1) since n is a unit vector: x CA- x 	 = 	 x fi) x n= fi x Ax

(brackets are redundant).

2) Axii= 0

This gives the parallel and perpendicular components of the vector.

2-2 The Conjugate, Modulus, and Inverse of Quaternions

The Conjugate: As quatemions are a set of hypercomplex numbers, we need to look at

conjugation and absolute values before considering division. If q =a + A the conjugate is

defined as q =a-A



Consider the product:

qq' = (a + 	 — A) , a 2 — AA

= a 2 	2i2 + A 2 2 j 2 +A. 3 2i 2 ) 	
2-2-1

= a 2 +A l 2 +A 2 2 +A 3 2

= qcl

which is real and positive definite (positive and zero if and only if q is zero).

Now we can define the modulus of q:

14 , isW 	 _ Va2 Ai2 A2 2 R._ A 3 2 	 2-2-2

The effect of conjugation on a product: consider

(Ail)x = (-A ofl+ A xri)'

= -(Ax).073x)-- (Ax )x	 )

= -(- A) °	 A) x —(8)
=-20P+Ax(—B)	

2-2-3
=—BoA—(—B)xA
=430;4+13x71
=—Aon —AxB
= B . A x

Since the scalar part is not affected and the vector part changes sign the order is reversed

under conjugation.

1'
1
	I qi 2

The multiplicative inverse: Let 	 qx then q lq =  	 I — — qq -1 as
\ 	 / 	 /

[2	 1,412

expected for multiplicative inverse.
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Thus the previous two sections have shown that for a real quatemion defined as q = a + A all

algebraic operations are defined. Thus quaternions form an algebra.

2-3 Euler's Formula and Quaternions

Euler's formula is e' ° = cos9 + isin9 which can be used to represent complex numbers. Thus

there must be an Euler form for the quatemions.

Using q = a + A which we can also write as q = a + ATI where A=74= 
Ai 2 + A2 2 + A3 2

and n is a unit vector in the direction A is pointing (or n = a A ) , we can look for the polar form

of q: If r = q = a 2 + A 2

A
7Then we can define cos° = 7- and sin =- —

r

so a= r cos() and A= r sin 9

Then q r cos 0 + r sin t9i.

= r(cos + P sin .6)

= re ro (since r 	 –1)

where ere is a unimodular quatemion.

2-4 Unimodular Quaternions as a Group

There are four properties which must be satisfied for the unimodular quatemions to be a group:

closure, associativity, existence of an identity, and existence of inverses.
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First: let set G of elements a, b, 3 a, b, c, 	 e G be unimodular quatemions.

i.e. a = e a° =1+ A =1 +.1a i + 	 2 -4- 1

Since the unimodular quatemions are a subset of the quatemions, two of these properties are true;

namely associativity and the existence of an identity (namely 1). These have been seen for

quatemions under multiplication but not explicitly proved. In fact they are included in our

definition of the quatemion.

Existence of Inverses: here the elements of the set a, b, c all have the property 	 = 1 since they

are unimodular and thus a - 1 = ax = e -P° which is an inverse.

Then

aa = e Fe e -Fe

=
2-4-2

= e °
=1

as required for the inverse.

Closure: Given a, b we need their product to be unimodular (in the set G).

ab(ab) x = ab(b' a')

= 	 still unimodular 	 2-4-3
=1

or if

a

b e l-292
	 2-4-4
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Then ab = e i101 e l-202 = e l-303 also unimodular 	 2-4-5

Thus all four properties are satisfied and the elements of set G are indeed a group. The following

properties are also shared:

-identity of the group is unique

-inverse of each element of the group is unique

-a b = a c then b = c ---> dual (i.e. b a = c athenb =

2-5 The Triangle Inequality

Before showing the quaternion form of the Triangle Inequality we need to

prove Vq0 q2 , lq 1q2 1=1q1 11q2 1. Let q l = B" and q 2 = r2e 1282 thenP

em21
	

(12

Iri er101r2 er202	Ili er191 11r2 er2°2

krz i = irjr2 1 	 2-5-1
Re(q 1 q2 )= Re(q 1 )Re(q 2 )

= rir2

LS RS



Now the Triangle Inequality . q1 + 	 +

lq + q 2 1 2 (q, +q,)(q: +q2x)

= 	 + q2q: 	 q2q:

q112 + q2 gig; 
± (q1q2 )X

q1 1 2 + 1q2. 1 2 + 2 Re(m2

< + 2 ± *W2

< ql + q2 + 2 q111q2

(qI +

.so	 + q2 1 	 + 1q2 1

2-6 Rotations in a Plane Using Complex Numbers

Given the x-y plane as in figure 2-6-1. Let a plane vector be represented by A = A 11 + A23 and

the angle between the vector and the x-axis- be El.

2-5-2

The vector A' represents the new position of A

after rotation through (1) degrees about the origin

(active transformation)

NOTE: 1) positive rotation is clockwise, i.e. this

system is right-handed.

2) this is an active transformation due to the

fact that the axis remains fixed.
Figure 2-6- 1

In order to find the components of A' namely Ai  and A; it is easier to use polar co-ordinates_
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Thus vector A may be represented by:

A, = r cos 0

A2 = r sin 0
	

2-6-1

r = A = A l 2 + A2 2

The rotation simply increases the angle between the x-axis and the vector A' to be 0 + (I) and

leaves the length of the vector, r unchanged. Thus the components may be found as

= r cos(0 +A2 = r sin(9 + q5)

= r(cos e cos 0 — sin o sin 0) 	 = r(sin 0 cos 0 + cos 0 sin 0)

= (r cos 0) cos0 — (r sin 0) sin 0 	 = A2 COS ± A, sin 0
2-6-2

= A, cos0 — A2 sin (6

sincos q3 — 

sin O cos
A,
A2

2-6-3

Now if we note the fowl_ of vectors, represented in section 2-3, we recognize that vector A may

ialso be written as: A = A, + A2 = r(cos + i sin 6) re ' 6 which is a complex form.

Now the previous rotation may be more elegantly written as:

A = re i(0+0) = 	 = e A	 2-6-4
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To see that this represents the work shown previously note that equation 2-6-4 may also be

written as

A 1 + i	 =	 (A1 + iA2 )
= (COS 0 i sin OXA I +1712 )

	
2-6-5

= cos 0241 + i cos 012 + i sin OA, – sin 0A2

and if the real and imaginary parts are separated:

Real: A1 = cos OA – sin 012 Imaginary: A2 = cos OA + sin 0,11

as before but obtained in one equation much more easily.

Now a passive rotation in which the vector

remains fixed, and the axis mows, is illustrated in

figure 2-6-2. This rotation can also be viewed as

an active rotation through -(1) degrees. Thus the

equation representing this is

A = re' (") = e- i° A
	

2-6-6

Example 2-6-1: An active rotation

Using complex numbers, rotate vector A 	 +.h3 through 60 degrees in the x-y plane.

Solution:  60° = — counterclockwise 	 e
3

18



= 	 = A(cosi- +i sin 1)

	

= + 	 + '123)

	3 +	 — 4i — 4 A5(—
2
	 2-6-7

— 3 — 413- (30 —
2 	 2

3_ 4.,h (313 _
2 	 2

2-7 Active Rotations in 3-Space using Real Quaternions

In order to extend the use of complex numbers to 3-space, quaternions may be used since they

already have a unimodular form, and represent 3-space. It is also advantageous to find a foiuiula

for the rotation of a vector about an arbitrary axis of n direction in 3-diamensions.

Try = e"A	 2-7-1

which will work only if A is perpendicular to ii_

To see why consider the case where n is parallel to A (i.e. A = An ) then A should remain

unchanged:

= e:4 = (cos 9 + n sin 0)Aii

	

= A cos Oh + A sin Oii 2
	

2-7-2

= —A sin 9+A cos

which is no longer a vector!

We need to look for some properties of A that A' must also share. The length of A' must be the

same as A . So A
2 	 -

= A' A = = A' A'	 2-7-3
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but note :4 x = -A	 2-7-4

referring back to 	 = e

;4" = A x (e ne x = — -n0 2-7-5

and thus 	 '

— Ae = —-110 	 2-7-6

which is not equal in general.

However the fact that the length must remain constant leads us to believe that the above formula,

equation 2-7-3, is a guide to the correct form. Look at the form A' = RARX where R is a factor

like e l? ° . Apply this through the equivalent length requirement of equation 2-7-3:

(71 1) x (RAR'
= R" ;ix R' 	 2-7-7
= —R;4- Rx
= -A'

Note the reversal of order and the vector is unchanged as required!

But what is R? Equation 2-7-1 must represent the effect of R and Rx on the vector rotated through

0 degrees. This leads us to a form ofR from equation 2-7-3. Let us move half of the factor e h°

through the vector respecting conjugation:

20



= e"BA

rit9 eB

= e	
/

(14 + A2 j + A3 10
110	 tiO	 118

=e2 A,eli + A 2 eT j + A;e 7 k

= e e (A,(cosf + n sin	 + A,(cos!?, + n sin	 + A 3 (COS 	 sin 1)/c)

= el (A,(cosli	 +A2 + nj sine) + A3 (cos f k + nk sing))	 2-7-8

no
=	 cosl — sin f) + A2 (3 COSI — jn -sine)+ A 3 (kcose —

i9	 _fie 	 " _770 )
= e 2 A iie 2 ± A2je 2 ± A3 ke 2

= e n: (A 1 i + A,Tj + Aff)e '2°

GO

 e 2 Ae 2

Thus an active rotation in the arbitrary direction n is given by

	

24' = e1 ;4e 1 	2-7-9.

Let us check equation 2-7-9 under equation 2-7-3 and the case where A and n are parallel.

First:

= x A = -2'2'

= —e 2e 2e 2e 2

▪ —ehlA(1)2e -141

	)e -hl
	

2-7-10

▪ e n2

 A e n 2

A

A

2 g -
e 2 e

2

which is fine.
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And

A' = e 14 24e-4

e tt 2 Ane =  

=- A32e nie "2

= Ah
=A

2-7-11

A is left unchanged as required. Thus equation 2-7-9 is indeed correct.

A quick shortcut: We can make use of vector behavior by separating A into perpendicular and

parallel components:

parallel is the projection of A on n : A ll = (A 2-7-12a

perpendicular is what is left: Al = 2-7-12b

Such that A= All + 2-7-13

The parallel component is left unchanged by the rotation and the perpendicular component

can be handled by this simple formula: Al = e"A i 	2-7-14

Thus the general rotation may also be found from: A' = ,71„+ en°A	 2445
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2-8 Illustrative Examples

a) Rotate the vector A=21 + 23 + k through 90° about an axis pointing in the

direction B = 	 + 3fc .

B 	43 + 3ic 	 4 3
Solution: we need a directional unit vector 	 _ 	 j+—k

1131 110+16+ 9 5 	 5

now apply equation 2-7-9:

A = e 2 ;Lie 2 = (cos 7T + n Sin --02-4(COS 	 sin 't-4 -)

= — (1 + 	
VY. 

 (1 — 14) = —11(4 + )(1 —
2 	 L

1
= .y [14 - 	 + 	 -

_
= —

2 
A — A-

5
(4 j +310+—5(4 	

5
j+ 3k)A — —(4 j +31024 —0 j +3k)

5

=
SO  

[25A — 5A(43 + 3k)+ 5(43 + 3k)A — (43 + 307443 + 3k)]

1 25A-5(25(2/ + 	 + k)(4 +	 + 5(4) + 3fc)(2i + 2) +

50 — (43 + 3142/ + 23 + 0(43 +

1 25:4 — 5(11+ 2/ — 63 + 80— 5(— 11+ 2/ —6j+ 8k)

50 _(43+3)(11+2I_63+8)

"
50 {252 — 10(2i — 6 3 + 8k)— (441 + 33k + 50i + 63 — 801

= —50 [25(2i

= 	 [
,

425

1
+ 23 + k)— 10(2/ — 63 + 810 — (50/ + 503 — 25k)]

— 10 — 25)/ + 2(25 + 30 — 25)3 + (25 — 80 + 25)/n

25[-101 + 30 j— 15k1
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b) Using the Shortcut Rotate A= 12/ — 33 — 9k through 37° = cos - ' 0.8 about

ij= + 25+ k

B 21 +23 +1
BI V4 +4 +1 3

i f 	„
Solution: n =	 —  	 + 2 j +

— [(12/ — 31 — 9k) a —3 (2/ + + 12) —31 (2/ + 2) + k)

= [8- 2 — —31 (21 + +

= (2/ + +

=(121 - 3) - 	 - (21 + 2 + ic) = (10/ — — 100A„ + e h° A j_

= All + co§:cos-1 0.8) + n sin(cos-1 0.8)21

= + 21+ i) +
10 

+ 
3
-1 (21 + + lc) 	 6  (0/ — —100

10J

= (21 + 	 + -5- (2/ + + 5(2/ - -

=(21 + + 	 48/ - 4j — 	 + ((4— 2 — 2) + (— 4+ 1)/ +<2 +4):1+ (— 2 — 4)k))

= (2/ + 2) + k)+ — — 80+ (0 — + — 60)

= (2/ + 23 + 	 (5/ + 23 —141)

= 7/ + 4) — 13k
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3 Cc r r rnions zir I Speci Ti.ef _r1

3-1 Definition of a Complex Quaternion

A complex quatemion extends the algebra of quatemions to include imaginary quantities as part

of the quatemion. In order to designate the real and imaginary parts of the complex quaternion we

must introduce a fourth-	 isquare root of -I; as i; which commutes-with t , j and k i.e. — I/ etc.

The complex quatemion may have imaginaryparts of its parameters namely (a, Al, A2, A3) such

that

Q=(a +ib)d- (A, +10 +(A2 +iB2 )j +(A, +i.B3 )k- =a + ib + A + if3	 3 - 1 - 1

Thus Q, a complex quaternion, may contain a real number, an imaginary number, a real vector,

and an imaginary vector.

Now that complex quantities are present in the quatemion we must note that addition and

subtraction are still well defined if the real and imaginary _parts of the quaternion are_ grouped and

acted on separately. Multiplication is also well defined. However we will now need three types of

conjugation operations.

1) Complex Conjugation: changes the sign of i but leaves vectors alone. Denoted as Cr (Q star).

Q' = a — ib	 3-1-2

2) Hamiltonian Conjugation: leaves i alone but changes the sign of vectors and reverses order.

Denoted as Qx (Q cross).

Q" = a + ib - A —	 3-1-3
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2) Hermitean Conjugation: changes the sign of vectors and of i and also reverses order.

Effectively both Complex and Hamiltonian conjugation. Denote as QT (Q dagger).

QT	 ,Q*)x = a — ib 	 3 - 1 -4

Table 3-1-1 summaries these effects on different forms of quaternions, q i q, and on a complex

number, C.

Table 3-1-1: Effects of Conjugation

x T

C 	 a + ib a — ib a-+- ib a — ib

ql = a + ;4' a+71 a—A a—A

q, = re n° re it° re -110 --Mre

NOTE: any two operations applied to a quaternion is equivalent to the third.

	

= q 	 (qx
)*

	

(q) 1. 	qx	 (q a

	x  ) 1. 	q*	 (6/

3-1-5
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3-2 Absolute Value of Complex Quaternions

The modulus of real quatemions was well defined previously using the Hamiltonian conjugation

such that; given q = a + 2.1 = a + A 1 1 + X42 , j +	 as a real quatemion then

_ qq . a2 A i2 	 ± A32 3-2-1

Note that this holds under hermitean conjugation as qx = qT . Before considering the modulus of

a complex quatemion, Q, we must note the restriction on Q if it is equal to one of its conjugates:

Q=Qx Q=
Q+Qx (a+ib+71+0+(a+ib—A—in)

2 	 2
=a+ib

Q" —>Q=A+in

0 =V--->a+A
	

3-2-2

0=-Q` —> ib +i13'

Q=Q T --->a+in

Q = -QT-+ib+ A

Also the order in which the Hamiltonian and Hermitean conjugation are performed must be

considered due to the reversal of factors:

(QQAx = 0-0' = 00x

(QxQ) =
3-2-3

(QQT )T 
QTTQT QQT

(QT Q)T 
.QT Q

(note that the duals of each conjugation operation are not the same)
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In trying to find the modulus of a complex quatemion it makes sense to follow the form for the

real quaternion namely equation 3-2-1 or QO' but from series 3-2-2 this results in a complex

number. However we know that if we multiply a complex number by its complex conjugate a real

number is formed:

oo . (oo . = oo .

	
3-2-4

Since QV' =102 and ( Qx) 0 	 Q12 this expression will lead to

Q
4 TQQx 0 Q T

	 is real and non-negative. Is it a modulus? This is answered if the

Iexpression of IQ is positive definite. Consider

3-2-5

Then QQ' = (1+ 	 — in) = 1 2 — (0 2 = 1- 1= 0 so that IQ 4 
is not positive definite. So

Q1=[Qa`QQT Y4 cannot be a modulus. We have two types of complex quatemions:

1) Singular 101 = 0

2) Non-Singular QH 0
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3-3 Exponential Form of Complex Quaternions

From real quaternions we saw that exponential forms can be found using Euler's formula. Again

complex exponential forms may be found for complex quaternions except that a distinction must be

made between singular and non-singular quaternions.

1) Non-Singular:	 = re en'Ø e tha

= re"' e th' e'4
where n' =

r = QI# 0-

2) Singular:	 Q = re ige 1 -Fin
9

= re
io  1+ in enio

2

where h' = e n4iie - '14

r #1Q1-

In both cases: e'° = cos 6' + i sin 0- and e = oosO+ m sin q5

since on)2 = 2 )(ii2 =

	

(-1'}(-1}	 , we have:

	d 2 	3
	e'n =1+ (ih)a +00 — +003 

a
	+...

	2! 	 3!
a2 a4 	 a3 a 5

= 1   	+...+ifi a + 	 + 	 +...
2!	 4!	 3!	 5!

= cosh a + in sinha

3-3-1

3-3-2

3-3-2
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3-4 The 4-Vector and 4 Co-Ordinates

Regular 4-vectors represented by the parameters (ao ,a, ,a2 ,a3 ) may be expressed in complex

quatemion form as:

A =Ao + iA
	

3-4-1

where A (A "bar") is our notation for a 4-vector

Ao is the scalar part

A is a real vector.

Thus an event given at (t, x, y, z) may be represented by a 4-vector as

x = t + i(x/ + yl+ zk) t + 	 3-4-2

An interval may also be represented by a 4-vector as Ax = At. +i Axt + Ay1+ Azk)

These 4-vectors as quatemions have a special property that we can use to our advantage later:

they follow the foul' of 3-2-2 i.e. A = A T . Thus they are invariant under Hermitean conjugation.

3-5 Invariant Length of a 4 -Vector

Look for the modulus of the 4-vector quatemion. It should be invariant under transformation

between reference frames, since the 4-vector quatemion is Hermitean i.e.

AA' = A' A

= 432 -(c4)2

_ A02 Ai2 A22 A2

3-5-1
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We can now define three invariant transformation types:

1) AA' > 0 A is time-like, magnitude A ' 	 3-5-2a

2) AA - =a A is light-like 	 3-5-2b

3) AK < 0 A is space-like, magnitude 1117AT: 	3-5-2c

A 4-vector representing a point in space-time, has the form- (t,x,y, z) = x = 	 + zk)

and we can form the invariant generating:

xxx = (t +irk - 	 2 f2 t2 + (xis + ± zify t2 (x2 + y2 + z2) 3 _5 _3

Similarly for an interval Ax = At + iAi; between two points in space-time, We have

AxAf = (At + iAF At iAf) Ate (Ax2 + Ay2 + Az2)
	

3-5-4

According to the classification in equation 3-5-2 the interval can be time-like, light-light, or

space-like. However if we wish to discuss the velocity of a real particle; we should set the 4-vector

invariant length as time-like. So

Ax
u = A

z
	 3-5-5

where Ax = At + /AV

and 	 _ VAI 2 Ax2 Ay2 _ Az2 _ AxAx x >0

Thus we will deal with proper time intervals of invariant length of AT.
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3-6 Scalar Product of 4-Vectors

Given A = A, +	 B=B0+iB and noting A* = Ao 	=

Look at the modulus of A first:

14 2 	 Al2 422_ A32 A02 _14 2- 	

3-6-1
= - A. = + -AA

But A —Or = (A — ii1)(24 0
	 * A and also AA* = A* A= AA' =Ax A.

Thus the scalar product of A with itself is

IAl2 = A . A =	 3-6-2

which follows the known scalar result for normal 3-vectors_ This is also true for B.

Now let us explore the scalar product of two independent 4-vectors: A . B.

Define (A+B).(A+B)=-A0A-FB0B+2A0B

Since (A B)(A * B * ) = AA* + BB * + AB * + B A * , anciAA* = A A and similarly for B ,

we must have:

2A . B = AB* + B A*	 3-6-3

Thus we can now define the scalar product of two 4 -vectors as:

A . B 	 (AB* + B A*)	 3 -6 -4

or equivalently: A. B = (AB + B A')= ialtBa — AiBi —AB—A3133	3 -6 -5
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3-7 Lorentz Transformation of the Co-ordinates

In order to now deal with relativistic transformations of 4-vector co-ordinates, a form of the

Lorentz transfoimation (L.T.) must be found. As shown in previous sections the length of the 4-

vector must remain invariant under L.T. and also the resultant transformed 4-vector must remain

Hermitean. This suggests that the required form is similar to the quatemion rotations form. Let L

represent the L.T. operation which is a complex quatemion of unit modulus (non-singular) Thus

the form is L = e4e'"Bem and the L.T. of A is something like A = L ALT which is linear.

0
Now let's examine the operator L. First in L the term e

7

 2 will commute with A and cancels out

rgin LT and thus is redundant. The term e' 2 is a rotation in 3-space which only acts on the

imaginary vector part of A . This effect is illustrated alone below:

ing Ae -44

(A0 +1.4'4-

= e f.(4))e +en40 -20e 	 3-7-1

+ie - Ae

Ao + le 2 Ae 2

which only rotates A through 0 about an axis of direction

This operation has been covered previously and is not important now in discussing the L.T. Now

.only the term e'"' is left . This will be known as the Lorentz Boost. Its effect will be to

relativistically add the velocity v to the system as a whole (co-ordinates, velocity, and momentum)

or if you will "boost" the system to a new value. This boost can be viewed under two cases as

were the rotations:
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Case 1) Active Boost: The system consisting of objects with velocity, co-ordinates, and

momentum has a velocity v relativistically added.

i.e. A =	 3-7-2

Case 2) Passive Boost: The system is transformed to a new reference frame traveling with

velocity v relative to the old frame and all measurements are thus measured from the initial frame.

i.e. A = e 2 Ae	 3-7-3

Thus the L.T. is a_product of two terms representing a rotation and the Lorentz boost (relativistic

shift).

However, so far we have not discussed the form of 4-velocity and 4-momentum; but have just

assumed that they _ are time-like. This is to say that they act similarly to 3-space velocity and

momentum. We have in fact assumed that they are time derivatives of the co-ordinates. The next

section will clarify this for the time-like condition for 4-velcotiy (we have in fact just "cornered"

our options on 4-velocity and 4-momentum). Recall in that the time-like condition was chosen in

section 3-4 when defining the 4-vector so we are correct in assuming the time-like condition.

3-8 4-Velocity, Intervals, and Rapidity (a) in Space-Time

If we set an object moving in sp-ace-time with a velocity then the interval between two positions

(events) is given by:

Ax = At + iAf	 3-8-1
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The form of velocity in Newtonian-Euclidean geometry is V – At where At is invariant. Then in
dr

Ax
4-space we would need: u = — where AT is the invariant time-like length of the 4-vector Ax

A

(same in all frames). Thus

At 	 ( 	 1. 
	kj +

Ay 	Az "-\
– (uo , ,u2 ,u3 )= 

AT 
+ 	  + 

AT AT i

where AT 2 = At2 -Ax2 	-Az2

We can now use space-time relationships to define the rapidity a of the object as

cc = tan' v 	 3-$-3

This is the angle of the Minkowski triangle given in hyperbolic trigonometry

i.e. 	 At = At cosh a

= AT sinh a

v = /At = tanh a

Limits a 	 ; 0 < tanh a < 1

\If we also define y = (1- v2 ) = cosh a 	 3-8-4

At 	 lAt'l 
Then u = uo + /it = y + – Az_ +i 

AT
3-8-5

Also note that u 02

4-vector.

2 ii3 = 1. Thus every 4-velocity of a real object is a unit time-like

3-8-2
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A special case: Photons

Consider the interval Ax between two events on the world line of a photon (AT = 0).

=1
At 	 3-8-6
AT' = At'(Lv^I 2 = 0

At 	Ax
so it —, 111 = 	

°	 AT

speed of light.

etc. are undefined. This is the limiting case where a -> 00 yielding the

As with all unit 4-vectors; 4-velocity has an unimodular form. We can find this by recognizing:

At = AT cosh a
AF = A z- sinh at",

where r is the position vector.

Ax = At + iA = _At +

= A T(cosh a +tit sinh

= AT eina

Ax_ And thus the 4-velocity can be found as it = 	 _—
— A

which is a nice simple form.

3-8-7

3-8-8

ilia	 3-8-9
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3-9 Lorentz Transformation of 4 -Velcoity

We had for 4-coordinates a form of the passive Lorentz boost: x = e "' 2 xe 	 , This holds

equally well for an interval Ax We can now use the definition of 4-velocity using the invariant

length to find the form of the L.T.

Ax i = e Axe'

Ax
A

Ax
Az- 

— e	 —
r
e 2

AO-= e v2 ue 2

3-9-1

,s
where u is given as u = u 0 + 	 + u2.1 + u30

This is the same form as for the co-ordinates which is not surprising as we laboured to set the 4-

velocity to be time invariant. Thus the rationale to set AT invariant is now clear.

This example will illustrate the nature of the previously derived 4-vector L.T. we will see that it

can be viewed as a passive "rotation" in space time. Now we will use matrix method of standard

L.T. to derive the quaternion form.

Let a primed frame be moving at vo in the x direction relative to the inertial, unprimed frame

represent the transfoiniation; under the LT., of an object's world line AB.

1
Then y = cosh a —

17-7
 and At'= ro t — yo Ax

In order to simplify the algebra we can express each individual element's transformation in a 4

element column matrix:
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rAtr-
	

70	 rovo 0 0 At-1

Ax'	 — rovo 	 ro 	0 0 Ax

Ay'
	

0	 0	 1 0 Ay
	 3-9-2

Az'
	

0	 0	 0 1_ Az

For now we can omit Ay', Az' as they remain unchanged.

Thus =_ V
/ 0

- 1 	 — vo

— vo 	1

At

Ax
3-9-3    

However we know from the Minkowski Triangle in the space-time diagram that yo = cosh a and vo

= tanh a ( see section 3-8)

Thus
At'

Ax` 

cosh a — sinh a
— sinh a cosh a

At

Ax
we recall that e a cosh a + in sinh a and we can       

combine this 2 X 2 matrix into a linear equation:

At' = At cosh a — Ax sinh a
Ax' = Ax cosh a — At sinh a

Now substitute for At' and Ax' from 3-9-4 and we find

At' +	 = At cosh .a — fix sinh a + iii(Ar cosh a — At sinh

= (At + infix) cosh a — Oh At + fix) sinh a

= (At + infix) cosh a —n((in) 2 At + itiAx) sinh a

= (cosh a — sinh a)(At + infix)

= e -tha (At + infix)
a

- 	

-in—
= e 2 e 2 (Ai ± inAlC)

,a

e

- 

2 (Ai ± iliAx)e 2

noting that n 2 = —1, i 2 =	 SO (in) 2

3-9-4

3-9-5
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Does this form hold for Ay', Az' which we omitted? Consider this:

4:1 Ay r + k/\z ' ) = 4:1 Ay + IfAZ)

- in—
=e 2 e 2i j

("
Ay+fcAz)

- in— in a
(j 

Ay ± kAz)

. ,a	 ,,a"
— e z(j Ay + fcAz)e

Thus if we let At.' = At' + i(itAx + /Ay + ftAz) we have a L.T. of the form

a	 a

Ar = e 2 Ar e Th 22 which is the same form previously derived and is indeed correct.

3- 10 Examples of the Lorentz Transformation

Example 1 Frame 0' is moving at rapidity a =1n(3) in the positive z direction relative to frame 0.

In frame 0, event A occurs at (t,x,y,z) = (5,2,3,4); also, a rocket is moving at rapidity j3 = ln(2) in

the y direction. Find the co-ordinates of event A and the 4-velcoity of the rocket in frame 0'.

Solution: In frame 0 we know A -= (5,2,3,4) x 5+1(2i + 3/ + 4k)	 3-10-1

-ik— 	 1
apply transformation: e 2 = 	 (2 — 	 3-10-2

11 3

since

1 	 2
cosh-

2
In 3 — 	

sinh ,T
1
 1n 3 = 	

V 3

3-10-3

3-9-6
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– 1)))

12

= 
12 

(25 + 493 – 20/c))

= 	 (20 + 4123 – 200 + 6/ –6i + 5 – y)
1

Then

x =e
ik

2 (5 +i(2i + 3 j + 4k))e

1 
I-- (2 - ii)(5 +1(21+ 3/ + 4142 –10
3

= 3 – /010 +1(4/ + 6/ + 80)– 5ifc –1 2 (4– 3) + 3/ + 4(– 1))

= –31 –	 + i(4/ + +	 + 3/ – 23) 3-10-4

= 3(12 + 244/ +6j + + 6/ – – 6iff –1203 –6i + 3(– 1

= 1 (9 + 46/ +93))
3

3 +1(2/ + 33)

in 0: u = 
A

–
x

AT
= coshOn 2 + i3 sinhOn = (5 + 	 3-10-5

Ax 	 mika
u = 	 –e 2 	zte 2

A z
1 I	 pv

= —
12 

– ilcA5 + 3/jA2 –

1	 \/
= —

12 
– &Al° – 5ifc + 60 – 3/ 2/)

= 
1

1
2 

(20 + 2463 – 5/c) + –	 -1 2 (- /6 – 5(– 1)) – 30)

)

3-10-6
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3-11 4-Momentum

We expect the 4-momentum to transform like a 4-vector, so we can follow the 3-space definition

P 	 3-1 1-1

	

Thus P = E + iP = mu = me i''a where m is the mass of the particle. 	 3-11-2

Then also energy: E = m cosh(a) and momentum: P = m sinh(a). Again 4-momentum is time-like

but no longer a unit 4-vector:

p12>< = meme - if = m2 = (E + 	 — iP) = E 2 — 1P1 2
	

3-11-3

For a zero mass particle we will not have a 4 -velocity zi , but we can define

P=E+i13

pp  =E2—
E= P

P 2
=0 3-11-4

which is expected.

3-12 L.T. of 4-Momentum

Again since 4-momentum is a 4-vector we can find the required L.T. by directly following the

definition of momentum and using the known L.T. of 4-velocity. Then

,a
-in— -M-

P =-- mu' = me 2 ue 2

	=e 2 mue 
-in-

2	 3-12-1
-in— 	 -in---

= e 2 Pe 2

as expected.
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3-13 Invariance of the Hermitean Property, Scalar Product, and Proper Intervals under
the Lorentz Transformation

Recall in sections 3-4 and 3-7, these properties of the 4-vectors and of the Lorentz transformation

acting on them:

A A T

A = A*

A = L ALT

(

A LALTY = L* A' I,'

A = L* A* L'

,
Is this Hermitean property conserved under the L.T.? i.e. is it true that A =A

(AT = (L ALT )T

= (LT )T A T LT

= LA T LT

= L ALT

- A-

3-13-1

3-13-2

not surprisingly it is conserved.

Recall in section 3-6 the scalar product of 4-vectors was defined as

A. B 	 + B A*)= .(A.Bx + BA')	 3 -13 -3

Now is this invariant under the L.T.? Consider
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(A. B

AB +B A

2 [LAP (LBLT LBLT (LALA

=ALT (L* )+ LB LT (17 ALI]

2 VALT I;BLx + LBLT ALx]

= ;VAN,' + LB AL'i

= z LAB + B

=11,T,'[AB + BA]

= HAB +BA]

= A. B

_1
2

3-13-4

So we see that the scalar product of 4-vector is indeed Lorentz invariant.

3-14 Equation of Motion and the "4-Force"

Again 3-space results can be used as a guideline for finding the 4-vector equivalent. From

dP
Newton's second law we know. ,7-1 = F 3-14-1

dP
Thus the direct form for 4-vectors should be like 

dz- 

= f assuming that mass is constant (that is

not undergoing chemical change, undergoing an inelastic collision, or radioactive decay)

The question is what does f look like? It must act on a particle causing it to travel on a

trajectory. This is to say we must be able to solve for the new momentum of the particle,

Per + di-) from an initial momentum, P(z) over a proper time interval. We know that this

change must be due to the Lorentz Transformation of the 4-momentum.
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Recall that we had:

a 	 a -.0 	 ,et 	 , 	 0
rn— 	 M— ih— 	 M—

P =e 2 Pe 2 = e 2 e 2 Pe 2 e 2

= L PLT = exp(L)P exp(r, r )

where L is a complex vector.

So let us effect this transformation on the new momentum:

P --> Per + dr) = 	 'OP LT (dr)

= exp(L(dr))P exp(r. (dr))

= exp(f/ich-)P exp(fr dr)

= (1+ 1171dr)P(1+ fr dr)

= P + PRT dr + ladrP +11/1'PAT dr 2

= P +(if/1 P + P 11711dr +0(dr 2 )

3-14-2

3-14-3

where A4 is an arbitrary complex vector.

so P(r + dr) = P+dP= P+ (11-4' P + P 11-11dr

- + PaT = f
dr

3-14-4

Which is consistent with Newton's second law. Thus we have the equation of motion in quatemion

form for a particle.
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3-15 Lorentz Transformation of the 4-Force

In order to find the L.T. of this 4-force we need to recall that dt is invariant under such a

transformation. With this knowledge we can easily act the L.T. on this 4-force:

L 	 —P LT = 	 + POE

= LcIPLT + LPRT LT

= LAW LPLT + LPLT nal' LT
	

3-15-1

=(LA/1-1,) T = L*1 1 LT

We now have both the equation of motion and the L.T. for the 4-force.



Heavyside Lorentz 	 Guassian 	 MKS (rationalized)

4 Electromagrt 	 Ficroscopic Thee:,

4-1 Unit Considerations

Before progressing on further to special relativity or EM theory, we must look at units for space-

time. For the time being, for simplicity, set c = 1. We have three common unit systems to choose

from:

Table 4-1-1: Systems of Units

In order to simplify the algebra as much as possible the Heavyside Lorentz system will be used

(although any system of units is valid).

4-2 Vector Identities

Before we look at electromagnetism we need to have quatemion forms ofpartial derivatives, and

some identities. First look at quatemion calculus:

Recall in section 2-1 we had written ;4:8- = -A.:8- +Axb 	 4-2-1

46



we can then conclude:

( A B + = - A B

1(AB -BA) , A x 13-

Now let us define e "Del" operator: V ==- i sOx + jey + koz

Thus

V 0 = grad

VA=-divil+curlY1=-V071.+V xjai

The Laplacian: V 2 = VV —(

Note the negative sign here. So the gradient acts like a vector and the Laplacian as a scalar.

Similarly many other identities in three co-ordinates are also valid.

4-3 The Differential Field Operator

The scalar field operator should be invariant. Given 0, a scalar field then dq$ should be the

result of a scalar product of two 4-vectors. Let us try to decompose them:

d0 = 40 dt + O„Ochc + 03,0 dy + Oz O dz

=kfCb- 	+ Oy03 + O011o[dt i(dyi + dy) +	
4-3-1

=RO, - iV)cb] o [d Lc]

= DO dx

4-2-2

4-2-3

2 —A 4-2-4

Thus the 4 -vector field operator or -4-gradient; is D = - iV 4-3-2

Now look for the Laplacian of this operator. Consider D* = + N 	 4-3-3
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Then

DD* = (4 - A7)(4 + iV) D *D

= 4 2 + V 2

_ 42 A 	4-3-4
ot2 ox2 03,2 oz 2

-

-n

This is the D'Alembertian operator.

4-4 Conservation of Charge: 4 -Current

If we wish to look for 4-vector forms of Maxwell's equations we need to consider charge. We

expect charge to be conserved. Recall from vectorial Electromagnetism:

charge density p from Q= pdV 	 4-4-1

current density J from / = ]o /VS 	 4-4-2

The 4-vector foun will allow us to combine these scalar and vector quantities into a "4-current".

Namely:J =p+ if

For charge conservation to be true mathematically

Op 
+V oi =0.<7>D0J=0q(Ot — iV)0(p+ij)=0

Ot

443

4-4-4

which is an equivalent form for a 4-vector!
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4-5 Maxwell Equations in Quaternion Form

We have four known results:

VoE=p

V on=0

	VxB—	 — J
	

4-5-1

eB
VxE+T

t
= 0

where these are the microscopic (Lorentz) forms of Maxwell's equations.

First we need to define the E&M field as F -B + iE =i(E+in).	 4-5-2

We expect that Maxwell's equations will be condensed as the 4-vectors carry the scalar quantities.

Since D is operating similarly to Del let us make the claim that:

DF* = J <=> D* F = J*	 4-5-3

To prove this use Maxwell's equations and the identity Vi? = —V oV+Vx V 	 4-5-4

Proof:

DF* =(c5; —10— 13 —

=	 — i4E + ivn -vE

=-4P-iotE+4-v.13+vx,6)-(-v0E+vxE)

-4B+vo_E-vxE)+4-4E- -v0P+vx.P)
	

4-5-5

=v0E- (S7 x E + 413) — i(V 13) + i(V x — )

= p —(0) — i(0) +

= J

This is the quaternion form of Maxwell's equation (it now makes sense to use singular

tense).



We should also be able to derive the field from the potential. First define the quatemionpotential

as A = (0 + Owhich is consistent with B=VxA and

Vx_E- d-Vx 4:4 = 0

vx(E + 4,4)= o
E+4;4=-vo

Then

F =—T3+LE

(vo+ at,
= (4 -iv)(-C4)-(4o+v14)
=DA* —D.A

If we impose the Lorentz condition: D o A = Othen

D 0 A = 0

0 = 	 —	 0 (0 — 	 4-5-8

0=40-FV0:4-

	

So we haveF =DA* DADA* 	 4-5-9

We can now easily derive the field from the potential:

4-5-6

4-5-7
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F = D A*

= - iv)(0 -
= oØ-ieA-ivØ-vA
= 40 - V74 — A + v
-40+v 0,4-v x .A.-ki(-v - 4,71)

= (40 + V o A) - B +
=Doii+F

= F

4-5-10

4-6 4-Potential Gauge Transformation

The gauge transformation of the 4-potential will be most useful as it is independent of the co-

ordinate system used. The transformation is accomplished by (recall c = 1).

Th=A+VA
OA

O f = et
4-6-1

combine this as a 4-vector: 0' +i71' =q5 + —
( OA

— iVAet 4-6-2

I*

So A =A—DA or A = A* — D* A
	

4-6-3

Under a gauge transfolination:

Fr = DA*1(A*D*A)

= DA* — DD* A	 4-6-4
=(F + D A) —EA
= F —OA
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In order for this to be invariant we need DA = 0 i.e. A satisfies the wave equation:

(9 1 2 t9x2 ey2 – OZ 2 )A = 0 which can be solved using known methods. So the 4-force is

indeed not changed under the gauge transformation.

4-7 Lorentz Gauge

In order for the 4-potential A to satisfy Lorentz's condition we require D 0 A = 0 so, given some

4-potential A , we have IA – D o A = 0 which is Poisson Equation; which we can solve. We

have then a Lorentz gauge. So we have DF* = J and then F = DA* which are now invariant

under "Lorentz" gauge transformations satisfying EA = 0 .

4-8 Relativistic Equation of Motion

Let us now consider the motion of a charged particle with mass m and charge q, being

influenced by an EM field. Let it have rapidity 13; in a proper time interval d T ,

di = (cosh 13)dt = ydz - . The relativistic equation of motion of the particle is the Lorentz

equation of motion: —
dt

mg' = q(E + x B)
	

4-8-1

d dt
or in proper time: — 	 qy(E + v x -E-) noting y =

dz
4-8-2
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Let us now convert this to a quaternion foul' by taking the dot product of both sides with 241 :

XV dd	 hh1XV= qr 2 (17 0 E + 	 x B))

dm Aio- 47 =q). 2-170p,+0
dr

qi 2 E in 1  d ( y2 0 iy)) m l  d 22

2 dr‘ 
(v v))dz-

= m -
1 
-
d

(sinh 2 /3) = m -
1
	(cosh 2 13 -

2 dr 	 2 dr
id (7 2

2 dr
d

=7 dr 7m

q)/fi 0 E 
„Ti-

my

1 d
-1) = M -

2
-
dr

y

If we look at the particle momentum (i.e. Newton's second law)

p= mu

dp d	 d 
d
; — 

dr m4
 - 

dr
 my(I+

d
-	 i 

dr 
in rfidrmy +

4-8-3

4-8-4
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Now substitute the results of equations 4-8-1 and 4-8-3 into equation 4-8-4:

d p dd,
dz-

- 	 + 7 
cir

mr,

= qr(V o + (pi + x

1 	 .( -
--2 VE + Ev= qr

	qr	 [- - ET; + /2E' + 	 - nifd
- 2

[{2E} + 00(iE)+ (00) + -

	- qr 	 [{(- B +	 (B + LEA + iv(iE + B)+-(if - B
1 	 2

	qr	 [(- B +iL-')(i+iv)±	 iv)(B lE)]

Now we know F = -B + iE and u = 7(1+ = exp(ii,;(3) so

1[Fu + uFT 1 = [Fu — yr]
dz- 2	 2

dp
	or as p =mu then 	 - - 	 [Fp+ pF T ]

which is now a quatemion form of the equation of motion in an EM field (via Newton's

second law).

4-8-5

4-8-6

4-8-7



4-9 Lorentz Transformation of the Electromagnetic Field and Lorentz's Equation of

Motion

Let L represent a Lorentz transformation; e.g. for a passive boost, namely L = e 2 . We

already have:

x —> LxLT

--> LuLT

D —> LDLT

p —> L p LT

and we also know that m, q, dt, and d/ dt are all invariant under Lorentz transformation.

Now let us apply the L to Lorentz's equation of motion and evaluate each component:

d
L=

p
LT = L 

2m
(F p + pF T )

dz-

T	 q LpL — L(F p + pF T )LT
dz — 2m —

q-2in[
L(FP)

L' L(PFT )11

q	 [LFE LpLT LpLT L* FT LT ]
2m

Then we can conclude that the Lorentz transformation of the Field is F	 Lax or

FT EFT LT as LpLT is indeed the correct transformation for 4-momentum. Similarly we

find:

Fx -->
4-9-3

F* --> L * F* LT

4-9-1

4-9-2



where in the case of the pure passive boost

(
L T= exp — in—a) =

2
( a`

= exikin.-
2} 

=
4-9-4

Maxwell's Equation is now given as DF* = J. We are using a Lorentz gauge and we have the

correct Lorentz transformation for the 4-current as J --> LILT as well as for the differential field

operator as D --> LDLT . We know how the field should transform so let us simply apply this to

Maxwell's equation and see if it is consistent:

LDF' LT = LDLT L* F* LT

= LDLT (LFE)
	 4-9-6

Which is indeed correct. Now look at the conjugate form of Maxwell's equation:

D*F=J*

J*-->L*J*L'

D* F ---> L*D*LXLFLX
	 4-9-7

--*(LDLT ) * LFE = (LDLT (LFE) * ) *

which is similarly consistent



4-10 Example of the Lorentz Transformation of the EM Field

Given a constant EM field: -/F=-E0 I+1B.:1 Find the resultant field if it is transformed by

a = In 3 in the direction ii = (- 3 + 4

a 	 2. a 	 1
Solution: (note that cosh 

2 
= 	 , sinh = 	 )

	

2	 -,./3

-jai;	 1
L e 2 - 	 (2 -

1/3

- = OE
\

- 	 - if0 	 .7) j_iBo 17.- (2 + in)

= 	 — iii)(2EJ + iE0Iñ + 21B,:j -
3
1 r

= -
3 
OE +2iEoin + 4/B0j -2Boin 	 + Eyin +2B.ni + th onin)

= -0E.i +2B.(111 - :#1)+ 	 + 2iE.(ih - + Eon' n + iBonjn)3
I r

= 
75 

k100Ej + 50B0 (iij - 3n) + 100/B3 	 - + 25Efin +

4-10-1

4-10-2

note:

= - -1 (21- +

ki=;0-40 jii43+40

hin , /

(7/ + 240

4-10-3



So that

1 I
-iF' =-

75
k100E 	 - +100iB3 +50/E.(iii - 10 + 	 +

1
= —

75 
k100E; + –80Boi + 100iBj – 201E, + 3k) + 25E 0 / + iB	 +24k))

1 1, 	 s
= —75 k0.25E' –80A +4-80E3+107B„j+(24B, –600

A transformation in an arbitrary direction has been achieved in a straightforward way.

4-10-4

4- 11 Energy Density and the Poynting Vector

Let us now find a quaternion form for Poynting's theorem. We assume that the medium is

isotropic and linear in magnetic and electrical properties. Using the conservation of energy and

momentum we have from the theorem that the time rate of change of the instantaneous average

power density is given by minus the divergence of the Poynting vector P = (E x 13) Since our

field, F, includes both the electric and magnetic components we can assume that we need only take:

1 	 T 1 	 —v
-
2

 FF T = 	 B + iE)V3 + iE)

1
= -

2
(-A6-/LE+ia+i zEL)

= -
2

(B
2 +2iE x n+E 2 )

=-
2

[E 2 +B 2I+S x

4-12-1

We can recognize the first term as the energy density and the imaginary term as the Poynting

Vector (g).
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4- 12 The Complex Lorentz Invariant

We have the significance of FFT . Now what about FFx knowing that F = —f3 + = —Fx ?

Is this invariant under the Lorentz transformation. We have

F --> Lax

Fx -*
4-12-1

Now FFX 	 LFL> 1,F E = LFF' Lx so if FFX is scalar then it is indeed invariant. Recall

from chapter 3 that a quatemion Q (real or complex) is scalar if Q = Q > . So let us check

FFX under this condition:

(FFx) x = 	 F' = FFx
	

4-12-2

Which is indeed a scalar, and therefore invariant.

FFx --> IFFx E = FF'
	

4-12-3

So FFX is invariant under the Lorentz transformation. Call it the Lorentz invariant. Now let us

evaluate it:

FFX =(- 	 iS)(li -is)
=B 2 -E 2 +iE+Efl
	

4-12-4

= (B2 - E 2) 2in .

of which both terms are invariant under the Lorentz transformation A more useful

form will be

FFX =1(8 2 — E 2 ) —	 4- 12-5

so the real and imaginary parts here are both invariant under the Lorentz transformation.
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5 E ectrc 	 ic Way Li a Vacuum

5-1 Preliminary Results

First define the direction of the Electric field as I , the direction of the Magnetic field as in and

the direction of a wave's propagation as k . These form a right handed system of mutually

perpendicular unit vectors (orthogonal triad). Now we need to explore the properties of a

projection-type 4-vector, defined as k =l+ik , so that we may exploit them later. First note that

this is a singular 4-vector:

kk* =(1+ 	 I— ik)

5-1-1
=1-1
= 0

Now a useful and interesting property of this unit 4-vector occurs when it is multiplied by a

regular unit vector:

5-1-2

and similarly: ik = 	 5 - 1 -3
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Also we may font,. the unit 4-vector from:

= ik — tk Q k)

= + 1 	 5-1-4

=k

Now we can obtain an unitary property from

1(k + k ) = 1,(1 + + 1 — 
) 

Z(2) = I
	

5-1-5

and interestingly the regular unit vector from

1(k — k *) =1(1 + lc — I + 	 = ik 	 5 - 1 -6

Now if we take the square of the 4 -vector:

k k k 2 = 1 + 2iic 	 fc = 2 + 2ifc = 2k 	 5-1-7

(Actually (I) = k , so kn = 2 ,2_1 k )

Lastly let us look at the result of multiplying a quatemion in Euler's form by the 4-vector:

ex* 61)k = (cos 0 + k sin 0)k

= cos ek +kk sin
P. 	 P.

= COS elc — ik sin 	 5-2-8

(cos 0 — i sin 0)k
exp( 0)k

which will be very useful for electromagnetic waves.

Similar results hold equally well for the conjugate of this 4-vector.
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5-2 The Wave Equation

Now we need to look for a wave equation for the field and the potential (using the Lorentz gauge).

Before constructing a wave look at the wave propagation 4-vector dotted with the x-axis vector and

how it is affected by the differential field operator:

kox=kot—fc

141s_ 0 x) = (4 — iqko t

= k —0-0  + 	 + 	 + ife2)(k,x-f- k-2y + k3z)

= ku +
=k

5-2-1

and similarly: D* Q 	 = k * 	 5-2-3

How does the differential field operator affect a plane wave?

D exp(ik 	 = D(cos(k o 	 i sin(k o x))

sink o 20* o 2c)) + i(oos0s o .x))(D(c x))

i(D(k 0 xAcos0c 	 + i sink o x))

=1k exp(ik x)

We find, in fact:

D exp(± ic k 	 = -Tik exp(± it o x)

D* exp(± LIc o4= ±ik* exp(±	 x)

5-2-4

5-2-5
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These should provide a solution to the wave equation:

Li exp(ik a = DD* exp(ik o x)

= D(ilf expQk a x))

= (D exp(ik a )40
=ik exp(ik a xXiC)
= 'kik* expOk 0 x)

–kk* exp(ik a x)

=0

Thus exp(± ik a )c) represents a scalar plane wave propagating with velocity c = 1 in the direction

k =— . This satisfies the wave equation.
iro

5-3 Plane Wave Solution of the Wave Equation

In a vacuum Maxwell's equation reads: J = 0. Therefore DF* = 0 = DF where 3A such

that F = DA* and Do = 0 _

Thus we have D*F =0 —> 0 = DD*F =D. F where each component of F satisfies the wave

equation. Also sinceP = D* A then 0= DF*
	

D* A) -=CI A so that A also satisfies the

wave equation. This will be used as it is easier to solve for A and then find the field.

Referring to equation 5-2-6, a plane wave solution to the wave equation will have the form:

A= x 	 a x)Q,+ exp(– ik. x)Q2 	5 -3 - 1

where Q, Q2 are constant complex quaternions and k is the direction of

propagation.

5-2-6
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For A to be a 4-vector we must have the requirement that A = A T (hem	 tean)

A = exp(ik x)01 exp(— ik )02 = A T = eXp(— ik x-)0iT + expO k- ).1)0 .21.
	

5-3-2

To hold for all x: 	 Q' 	 = QiT must be true.

But since we have arbitrary complex quatemions we can choose to express them in the form:

0 = c1 	- i(c2 +1B-2 ) where B1 = 	 + 1312 i + B13 and lc ,1 , and //tare mutually1 

orthogonal.

We can pair c 1 and Bil by using the properties of the unit 4-vector and equations 5-1-5 and 5-1-6:

1 = 	 Is*) 	 = .1(1c —

So

= [cl + 	 — i[c2 +i132 ]

, [1. 4k +	 + B „OsL — k*) + i(13 12i B13i01

— 412- c2 (k +)+ B21 (k - k*)+ i(13.2j +1323

=[-1- k(c +	 +	 - B 11 ) + 012-1 +	 3-3-3

+ B21) + k * (C2 B21) + 022 + B2311

=ki k + az e + iB12 l + &Bid- 4a3 k + a4k* + 1-822 1 + 119231ni
= A 1 - i A,

Then A = exp(ik ox) (A l - L4 9 )-4- exp(- ik	 -21 ( -+ i A 2 )	 5 -3 -4

since A i =A and A2 = A T2 :



A(skox)+I sin(ko x))A 1 — 	 cos(k 	 — si n(k x))A 2

+ (cos(k	 — i sin(k 0 x))A I + 	 cos0c 0 x + sink 0 ,x))A 2 	5-3-5

= cos(k x)A, + sin(k 0 x)A

and then also A* = cos(k 0 x) + sin(k 0 x-)A; 	 5-3-6

Now we can find the field:

F = DA*

	

— sin(k 0 ACD(15_,_ 0 + cos(k 0.1c)A72 D0i- 0 	 5-3-7

= 	 sin(k 0 x),4; + cos(k 0 x)A*2 )

also a solution to the wave equation. Now let us try to simplify this field by substituting

the form of the A l and A 2 into the above equation:

F = k(— sin(k 0 OA; + cos01 a1_)A *2)

= 	 sin(k a x)a 1 k* + a2 k + i(Bu i + Buiq

+ cos(k4a3 + a,k+ 0221 + B23701)
= - sin(k 0 x)[a,kk* + a2 kk + ik(Bui +

+ cos(k	 u3 kk*"+ a,kk + ik(B221 + B2371

= — sin(k o la k + ik(Bij + B„101+ cos(k 0 x-).- a,kk 	+ B2

5-3-8

As kr = ko (0). Now kk generates a non-vector term so we must set a, = a4 = 0 or the vector

nature of F will be violated. Thus we are left with
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F = - sin(k o x)[ik(B12 .1  + B13/1 + cosOs x°	 k (1 3 22 1 B

= ik(- B121 sin(k o - B13m sink o + B22 1 cos(k o X) B23 ritcos(k o x))

= ik(B22 1 cos(k ox)- Byfir sink o + B23 /17 cos(k o x) - B12 1. sin(k 0

k B22 cos(k o X) + B 13k sink o x)li + [B23 cos(k o x) - B12 k sink o x)]

-

kox) -
e k°x) + e2(---bx)	 e k( kox)

 - -e -k( - -
B23 	 — B12k 	2 	 2

ik B22 + B13 e	 +k(kox) B22 — B13  e-k(to))

2

- B
	+ 

B23 + B12 , B 23 	 12 Ickkox) 	 44.11070--t-
2 	 2

((
B 	 R	 r„

= ik	 22 + B13  I + B23 — — 12  th ewi-ox) + ( B22 — B13 ± B23 + B12 in,
j e -k(-k°-x)

	2 	 \ 	 2

=	 + C2 111)e lc ( k°a-' ) +(C3 1

=	 e-k-(&'''s) :42 )

where A 1 , 22 1k thus these vectors are in a plane perpendicular to the direction of

propagation.

There are only two cases to consider:

Case 1) Al = or Al = in' and A2 = 0 so, choosing the second case: A* = -A 0 ke k4°-

F = D(-e k k°117)=	 k A	 = -k A e k k"=0  	 o 	 0 5-3-10

Case 2) A2 = Z or A2 = -In and A, = 0 so, in the second case: A * =

k(Is.ox)e	 + e -	 kikox)	 -12(tox)e	 - - e 
= ik B „ k+ Bi3

-

2 2

m
)

5-3-9

F = Dfr40e-
-0S = —ifc 	 = -kA0 e -k -k°*I'in	 5 -3 - 11
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In either case we have

F = A0e±I'L"k 0 (1+ ik)th
= A0 k0e±4°(—	

5 -3 - 12
= —Bo th + tEoi

which is indeed correct.

5-4 Circular, Plane and Elliptical Polarization

Now let us try to classify these electromagnetic waves under polarization. We will use standard

conventions for this with all of the confusing contradictions (but avoiding Stokes Parameters).

This section will also help to summarize the results so far that we found for the general plane wave

solution.
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Circular Polarization

The simplest case we have two "directions" to consider (here comes confusion)

Table 5-4-1: Circular Polarization

Positive Helicity

or

Left Circular Polarization

Negative Helicity

or

Right Circular Polarization

A iA0 exp(kk o x)rit — íA0 exp(— ick. .2_c)ril

F = —B + iE Aoko exp(kk o 4_ 7i, + il)

= Aoko exp(— i/c. x)(— in' + if)

Aok 0 exp(— 	 o x)(— hi' + ii)

= Ao ko exp(ik o x)(— 111 + ii)

— iF = E + if? Aoko exp(k k o x)(i + irn)

= Aok 0 exp(— i Is o Ai + iin)

Aoko exp(— kk o TV + ith)

= Ao l c 0 exp(ik o xXis + lin)

In either case the Magnetic and Electric components can be read off directly.

Linear polarization 

In this case both negative and positive components are included in the wave so that

i[A+ + A - ]= Ao [exp(kk	 — exp(- kr 3c)1717

= iAo [cos(k	 + sin(k o x) — cos(k o + sin(k o x]in 	
5-4-1

iAo k sin(k o

= Ao sin(k 0 )c)(—
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F = do cos(k o )01)(k	 = do k cos(k o Ai)

= iA0 cos(k o Lc)k 0 (1 +	 Aok cos(k o x)i(i + lin) 	 5 -4 -2

= Ao ko cos(k: o x)(— m + ii)

— iF = kF = ifc k A 0 cos(k	 = A 0 conk o x)ki

= A 0 cos(k o x)(i +
	 5-4-3

Elliptical Polarization

The most complicated polarization occurs when the positive and negative parts of the plane wave

no longer have the same amplitude:

A =	 exp(iik o 2c) — A2 exp(— kk o x)irli

= iRA i — A2 ) cos(k o x) + lc (A i + A2 ) sink 0 417

F = —lick A i exp(ick 0 x) + A2 exp(— kk o )±7)]m

=-	 exp(kk	 + A2 exp(— kk o x)]km
= i[A, exp(kk	 + A2 exp(— fc k o K)]I;

ik[A, exp(kk lc) + A2 exp(— kk o x)]Q + /tie)

= k ° RAI + A2 ) sink, o 4 + (A i — A2 )1( sink 014— m +

— iF = k o [A i exp(fc is o + A2 exp(— lc k	 + ith)

= k ° RA + A2 ) cos(k o .x) + (A 1 — 212 )1c sink o x)r

Here the magnetic and electric fields are rotating in the 1 — in plane, with angular frequency

w = ko and an average amplitude between A,. + A2 and A1 — A2 . Thus the field vectors trace

ellipses with semi-axes A 1 + A2 and A1 A2 .

5-4-4

5-4-5

5-4-6
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This is actually the most general case as there are six possibilities for the amplitude representing

various polarizations:

1) A l = 0 or A2 = 0 Negative or Positive Helicity

2) A l = A, or Al = —A2 Linear Polarization

3) A l > A, or A l < A2 Positive or Negative Elliptical Rotation (right handed system)

5-5 Energy Density and the Poynting Vector

As in chapter 4 we can find a form for Poynting theorem. Again take i FFT

For a linear polarized wave we find

1 	 1 j
—
2
TT =

2
kzeloko cos(k o x)(— tit + ii))(Aoko cos(k 0 x)(ii7 +

(Aoko )2

5-5-1

2

= (A0 k0 ) 2 cos2 (k. 	 +ilc)

and the direction that the energy is directed is in the direction of propagation (Poynting's

vector).

2 cos2 (k o x)((m 2 + /2 — nail +

2(A0k0 )
cos2 (k o x)((2) + 2ik)
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For a circular polarization (positive helicity) we find

1
	—

2
FFT = -- (Ao k0 exp(k o1.7)(— iiz + ii))(Aoko exp(k o 	+

\2
26/0k0 )
	 exp 2(k o ,X#M 2 12 — thil + 11th))

2

(Ao k0 )
2

exp 2(k 0 x)(2 + 2ik)
2

= (A0 k0 ) 2 exp 2(k o x)(1 +

5-5-2

Again the term that we interpret as Poynting's vector is in the direction of propagation. We

expect that the energy should be directed in the direction that the wave is propagating so that the

wave is indeed transmitting power.
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Ek itromagnetism: 	 irocz 	 th 3ry

6-1 Maxwell's Equations

Recall in chapter 4 the microscopic form of Maxwell's equations in Heaviside-Lorentz units,

with c = 1:

voE=p

voli=o
- oE

VxB— — Ja

VxE

- 

+ 	 =0a

orifc# 1:

V.E=p
VoB=0

0

- 

1  E 
VxB —

cot 
— 

c
J

VxE+ 	 —0
c et

Which with the field defined as

F= -P +iE =i(E + 	 6-1-3

and c =1 lead to a quatemion form for Maxwell's equations as

DF* =JD*F= J* 	 6-1-4

Now we need to find an equivalent form for the macroscopic theory, with c 1.

6-1-1

6-1-2



6-2 Modified Maxwell's Equations

Normally we make notation simpler by defining macroscopic field variables as (in Heaviside

Lorentz units):

D=EE+P
	7 1, 13-

	6-2-1

where the new components are the polarization and magnetization. A linear, isotropic,

homogeneous medium is assumed. These lead to the macroscopic form of Maxwell's equations, in

Heaviside-Lorentz units, in the form:

V.D=p
V oB =0

0— 1  D 1
VxH— 

c ot c J

- 1 On 
	VxE+	 =0

c Ot

In SI (rationalized MKS) units, Maxwell's equation read:

V.D=p
VoB= 0

- OD
VxH— =J

Of

- a
VxE+

t
=o

However these forms are very dependent on the system of units used and we will need to change

our definition of the quaternion field, F. Thus a change of the above forms is required in such a

way that we can salvage the previous notation and results form the microscopic theory developed in

chapter 4. So we modify these equations making some definitions:

6-2-2

6-2-3

73



0-	 l
-

VxE= oü
>VxE= 	

Aco Ot	 c etco et

From now on, let the speed of light in a vacuum be c o .

Let: A-   and = 2:6 	 6-2-4      

In Heaviside-Lorentz units, let c = .1.co

In SI units, let c =

Under these defmitions, and assuming from now on that E and ,u are constant, the equations of 6-2-

2 and 6-2-3 are changed in the following manner, for Heaviside-Lorentz units -

1 - a- 1 r)
J=VxH

co 0 /

1 	 - GoE=—v x B - 	
du 	 co Ot

1 1- 	of 
Ap VxAB

Ac et
vxa 1OE 1 

C	 GC

6-2-5

So that we now have for Maxwell's equations in matter these modified results, in both the

Heaviside Lorentz System and in the SI System:

-	 1
Vo.E=p

V .C=0

vxü- oE _
c ot cc

	VxE+	 	 =0c a

6-2-6

Finally, define = Ct (where this z- is not to be confused with the proper time in Chapter 3).
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These redefinitions let us preserve the quaternion notation developed in chapter 4. We also have

the added bonus that the above forms are preserved in the rationalized MKS system with the

appropriate constant definitions as above.

6-3 Quaternion Form

Now we can follow the same form developed in chapter 4 and define; in either the Heaviside-

Lorentz or the Rationalized MKS system of units:

F = —G + ivE =—A+ iE

it 	 1`
p+—iJ

E. 	 c

D = —4-iv =ov -iv

Then Maxwell's equation in matter read (scriptic lettering)

.F * = J <> D*F =

The potential, following the same development in chapter 4, follows from:

6-3-1

6-3-2

vo0=o3ii 3v xA=C

0=VxE+ 	 —VxIE+ 	
0	 Or)

6-3-3

Now define A = + iA.



Then:

DA * = (Or — 	 — iA)
(	 eA) f

	, --vxA+i —Vc13 	 Id-V2(1)+V.A)

=-0-FiE-FD0A
=F+Doik

But by the same argument as before, we can impose the Lorentz condition D oA = 0. So we have

indeed the same foint as before, namely:

DA* =F 	 6-3-5

Now we have a form of Maxwell's equation that will work for all linear isotropic homogeneous

media with constant electromagnetic pro_perties, and with time varying fields.

6-3-4
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7 Plaru 	 ri a LL-Liar, Isotropic, Homogeneous
Medium

7-1 The Wave Equation

From chapter 5 ‘Vve tteed to rao -Py thiS `,Va‘,Te equation

❑ exp(ik 0 x) = DIX expOk 0 = 0 	 7-1-1

to be valid in matter.

In order to accomplish this we redefine the -unit 4-vertnr of propagation to now he:

k = 	 = (1+ JO 	 7-1-2

where ko =
co

=
c

Then all of the -nit 4-vector properties rerroin the same and it is still singular. However the dot

product of this with the x-axis vector changes slightly (as expected):

(CO
jo(Ct+a)

CO
= -Ct -4 °X

C,

_
—

- 

L 	 u

there is now an angular frequency involved.

Does the effect of the 'differential field operator change? Consider

D exp(-±o4 = 	 exp(± £k x)

7-1-3

7-1-4
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which has not clviag-A in -Form Now since all of +he results are in the s ame fr,rri we can

write down the generalized wave equation directly:

exp(kk o	 DD* exp(kk o = 0 	 7- 1 -5

which noNv represents a wave propagating in matter.

7-7 nip-to r, Plano , nnri Elliptical 	 Plane Waves

Now classify +hese ,..pees 	 pr‘lri'7ation. Again using standard conventions,

Circular Pnlarizatinn 

Table 7-2-1: circular Polarization

Positive Helicity

or

Left Circular Polarization

Negative Helicity

or

Right Circular Polarization

A iA0 exp(kk o *I — Mo exp(— k lc a .x)iii

F' = —G + it Aoko exp(kk o x)(— th ± it)

= Aoko exp(— ik a x)(— in + ii)

Aoko exp(— kk a ..1)(— in + ii)

= Ao ko exp(ik a .1_7)(— i + ii)

— if = E + ia Aoko exp(kk o x)(/ ± ith)

-= Ao ko exp(— ik a Ai + ith)

AA, exp(— k is a .2)(/ + ith)

= Ao ko exp(ik a Ai + niz)

No changes here from chapter 5.
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Linear polarization

lin this case tenth negative and positive camponentg are included in the wave so that

A =;
r 
A +A =;i2-1 0 	Lc) — exp(— kij: ° x)iiit

= ;iAo icos(k o x) + k sin(k o x) — cos(k o x) + k sin(k

= iAok sin(k 0 x)th

= A0 sin(k 0 x)(—

F = DA ' = L40 cos(k o x)D(k o 41

=eA0 lc cos(k o 1)(1)

Aok cos(k 0 ..17)(1: +

= A o k o cos(k 0 x)(— +

Irr 	 I 9, 	 .—ir = xr

= lick A 0 cos(k ox)i

= A0 cos(k x)ki

= A o k 0 cos(k	 +

elliptical Polarization 

A =	 exp(kk — A2 exp(— 	 Arn

= 4(A1 — Al ) cas(k 0 Lc) + 14A + A2 ) sinOs_

= —ikIs[A, exp(kk o2(:) + A2 exp(— kk )c)iii).

= 	 AI exp(4 0 Lc) + A2 exp(— kk o lkih

= i[A, exp(fils: 17) + A, exp(— kii Akj

= iko [A l exp(kk 	 ± A, exp(— klf 0 	 +

= k o RA, + A2 ) sin(k 0 + (A l — A2 )k sin(ls 4— +

7-2-1

7-2-2

7-2-3

7-2-4

7-2-5

79



– = k 0 [A i exp(k k 	 ± A2 exp(– kk o x-.)](/

= k ° RA, A2 ) c s(k 	 (Al – <42 sink 	 +

Here the magnetic and electric fields are rotating in the i – iii plane, with angular frequency,

co
—
c 

k0 and an average amplitude between A I + A2 and A I – A, . Now we see the true power of

the quatemi ,m notation as we have a consistent equation for a wave in a mer 4iim or in a vacumn.

7-2-6
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r 	 i 	 n L
8=1 Solution to the Wave Transmission Problem with a Vacuum Amiulus

It is more convenient to use the form of Maxwell's equation for the complex fiend operator namely

D* (OF) = iD* F 	 . .For this reason now define g = —iF = E + ifl so that gt is now a complex

vector. Also it is convenient to defile two partial differential operators as

= 	 + jey such that V = kez- + V 2
	 8-1-1

and 	 A2 7-7 exx eyy 	8-1-2

We have Maxwell's equation in a vacuum as DT = 0 D = 0 . Now let us make an

assumption of the form of the solution as

= co 	 t — z)g + sin(a) t — 134'2 	8-1-3

such that gi 	(x, , which represents an electromagnetic wave propagating in the

,• 	 • 	 -.,
K affection. 'NM substitute this assumed form of the solution into Maxwell's equation:

D* = (4 ± A)(cos(co t — f3 z)k ± sin(w t —13 z)k- 2 )

= — sin(co t — ,3 z)[(w — if 	 — iv 2 -g2 	8 - 1 -4

± co co t —13 z)Rco — i1 fc)g 2 ± EV 2gri]

	for a solution to exist: [(co — k)g, - iv 2 ,g--2 1= 0 	 8-1-5

and [(co — iflic)R2 + iV i ]= 0 must be true. 	 8-1-6
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()lee pnesihility is V201 = 1 and v2g2 = 17 Nvhich

1) (D, x g,) o 	 20, 	 8-1-7

2) (V 2 ogi ) = 0 	 >A207 = 0
	

8-1-8

3) (c0 — ifi fc)g; = 0
	

8-1-9

where in equation 8-1-9 both factors are complex quaternions. Refer to chapter 3. This

imnlies that bath quateminns are either singular or equal to zero. Thus for a non trivial solutiona--

tenth must be singular. gi is fine as it is arbitrary by definition and thus can be defined to he

singular. (co t — 1-0 must be made singular. Thus: (co t — icr) = k 0 (1— i 	 to be singular so

co -= J3 = ko

These three requirements will let us define a form for gt = 1+ i ii)Q, where 	 is a general

quatemion, say: a = [(a +lb)±(cfc -Fic2fc)±(4 +in)]	 8 - 1 -10

w 	 -wnere	 K

Now (a + ib) would generate scalar terms which do not make sense for a vectorial solution.

Also (ci fc + ic2 1c) generates scalar terms since k2 = —1. Thus we are left with a = 	 + A
,shish pro-hives vectorial tem.- e.s required.
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))E02 1 	 is absent. Then

8-1-13

c _
JU

1 i	 B = (A— k x :6)-F	 x A + 1-3)

= (A — ±	 — 13)

= +

— (1 + ic)E0

Thus gi — Eoi a complex vector.

We have solution for Maxwell's equation in a vacuum as:

g-- =((cosko (t —z))EGi + (sin k0 (t — z))E02 )(1 + if()

We can choose the origin such that the term (sin 	 — z

g = (cos k 0 (1 — z))(1 ± E

= (cos k (t — z))L 0 (1 —

8-1-11

8-1-12

where E01 k: , V 2 X E0 0, and V, 0 F,0 = 0 .

Then EQ = —V20 and A20 = 0 where 0 is constant on the conducting boundaries defining  the
transmission line.

So E = (cos k o (t — z))E 0 and B =

where 13-  I E ; 11 = 1E1 which we expect for a wave solution.

We should also he able to derive this solution from the 4-pntetnial Recall

F = D A* g = — iD A*

where A = (cos k — z))0(1 ± ik)

8-1-14

R3



nen

D = t — Ate o s k 0 (t — z))0( — l)]

=[(9 —	 — iv 2 j(cos k (t — z))00_ — WV

= — k (sin ko (t — z))0[(1 ±	 —	 /k)] — i(cos 1(0 (t — zAV 2 0(1 —

= 0 — (cos 1(0 (t — z))(— Xi — ik)

=	 o s k 0 (1 —	 0 ) —	 8-1-15

= i(cosko (t —	 ± /0E0

= i(cos ko (t — 400 + ikE0 )

= (cos k 0 (t — 	 Ro —fjo )
=}r

.ks recr irerl!
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Since _LC: is ana-lytic and VP, 0 we should be able to apply complex conformal rnappirtg as a

method of solving the boundary value problem for transmission lines . Refer tn figure 8-7-1

representing a cross-section of a very long transmission line and it's mapping to the W-plane. Note

the brtich ,-it on the negative x-axis.

L Plane 

V

" I

W Plane 

0           

Figure 8-2-1: rm5s-sti, n of the Transmission Line and its Mapping

We have fo v 20 and
AA n -rt.,,- A 	 r---
LA 2 te — 	 iuu yzn ucuittutin, in Luc A.-y plaice, aim

the rl part of the -rialytic

= 	 , 	 A.vhArP 	 -.i t , 	 = Vo

u2 =



S.:I obeys the Cauchy-Riemann equations so that

0 = (Ox + idy )(0 + iklf)

	= '40 — (9),T) ±	 +

= (Ox + iey + + /OJT

)0 = 	 (ex + fey

8-2-3

Now this confoiiiis to t = —AO 40,0 a ± 03,0 I) 4—> —(0x 0 +103,0 ) if we associate

complex numbers with vectors in the x-y plane as follows xi + yy 	 x + iy . Then the

significance of 'P is:

	

i49y )T = 	 (dx + iey )0]

= iE0 	
8-2-4

= exp(i . 14)Eo

= Bo

Luc tuLail.4. - 	 ....0 9n 	 1ULt, 	 — V7 Alf
WIG 11-.1 	 uu 	 v UW6.1.GCJ 	 wax Wt Lan unviptQL a0 	 — V 2 .

Now we see that the conformal mapping will solve for the magnetic and electric components of

we wave's field.

Thus the electromagnetic field in the annulus between the cnndnrtnrs of a trnnstnissinn line is in

the form of a wave of the form:

	F = i(coskji —	 1+ lic)E, 	 8 -2-6

	

WhereEo 	 _V7 .1. and --4.:-.0 T —1- 	 a' 	 A 	 0 • 4.1- 	 1
= V 2 yi etuu 	 Laplace s. equation , 2 y, — 	 wo annulus.

N^w a solution to the transmission line pp,blem will be explored using the conformal mapping.

For this the most simplest case will be explored.

/24



8-3 Transmission Line with Concentric Circular Cross-Section (using Conformal
Mapping)

Here we take a coaxial line with a concentric circular cross-section with a vacuum in the annulus.

This provides the simplest case for this application. Refer to figure 8-3-1

Figure 8-3-1

The mapping that will accomplish this is

z = exp w 	 w = u + iv = log z
= exp(u + iv)	 or 	 lnr 	 8-3-1

= (exp u)(cos v + i sin v) 	 — < 0

so x = exp(u) cosy and y = exp(u) sin v also u = 1nr . Note the branch cut on the negative x-

axis. The complex potential is then C2 = 0 + Nor = Aw + B A(u + iv) + B	 8-3-2

On the boundaries: ul 0 = Vo > Au, + B =Vo 	8 -3 -3 

u2 0 = 0 	> Au, +B=0 	 8-3-4 
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Then this implies:

Vo
A —

(u 1 — u2 )
8-3-5

V U0 	 2B = — Au2 — 	
— u2 )

So then

V0 	 V0U2—	 (u + iv) _
("1 	 "2) 	 (u1	 u2 )

Vo
8-3-6

- 2/2

(2/ - U2 + iv)
(U 1

Vo

ln —
r

Vo	 r — In b)
8-3-7

)
—	

— u2} w 	 112

Vo(" —So the field potential is 0 = Re0 =
u — u21 Ina — In 	 _ v°	 a .

In —a
b

(
In —

a 
— In —

So the potential difference, betweenthe conductors is 80 = Vo — Vo 8-3-8
In —

a
b

Which is expected for a coaxial cable.

Now the current in the central conductor can be found by taking a simple path, S, from one edge

of the branch cut anti-clockwise to the other side of the branch cut (i.e. point A to B). This is

necessary as a closed path would cut the branch cut and give us zero current. We can then use the

definition of current namely
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I = J o [OS

eig
	

since Elk
	

8-3-9

(3.r= j,, 	  odS

where S is a plane surface perpendicular to k .

Now if we use Maxwell's third equation and Stokes theorem we can evaluate this result

=
(
f + d:rJ 	 et 	  o ds's, 	 , 

= js(©x 	 dg

=

- f

B - kliA )

=

8-3-10

Now it is clear why the branch cut is really necessary. If we use a closed path in a region

in which n is analytic we would have I —(TA — TA 	0 which does not make sense physically.

We need to evaluate:

LI' =Im(S2}— 	 ° v 	 8-3-11
1 - U2 -
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V° B -

8-3-12

	(51P = TB - TA - 	 (1)
U1 - U2

Vo	( -t- — 	 70)
— u,

271-V0

"2

2 7-t-V0 	27TV 27-z-Vo
8-3-13So the current is /0 = 	 -=

u2 - u1	 lnb — ln a In!

In full space and time the wave is as follows:

F = i(cos k 	 —	 + fc)E0

= i(cos k 	 — 	 +

nr
= i(cos k(t— 	 1 + ilc)

V20)

V°

8-3-14

/-111 17;

where 1- is the unit radial vector perpendicular to k .

27r Vo
Also 	 = 	 (cos 	 — z)) , varyingIn in time. 8-3-15I 	 ko

V°	
80	 Vo 	 In!

is 	 = 8-3-16impedance 	 Z, 
Io

The
— c5T 27TV0 2n-

ln

It is now clear that the method of conformal mapping is the superior way of solving this type of

boundary value problem using quaternionic forms.
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8-4 Transmission Line with a Confocal Ellipsoidal Cross -Section

In this case the cross-section of the coaxial line is assumed to be concentric ellipsoids. Again we

need a mapping to the w-plane from the z-plane. Refer to Figure 8-4-1. C o represents the foci of

the ellipses.

One such mapping that will work is

plane

V 
W Plane   

Al              

Figure 844 : Cross-section of a Transmission Line assumed to be Ellipsoidal

z = Co cosh w = Co cosh(u + iv)

= Co [cosh u cosh(iv) + sinh u sinh(iv)[

= Co [ cosh u cos v + i sinh u sin id

x +

8-4-1

91



If we take a constant u = u 1 then

x = a1 cosy 	 al = CO cosh u
y = b, sin v 

where
	b, = Co sinh u	

8-4-2

X 
2 

y
2

so 	 2 + 	 2 = 1 	 indeed an ellipse 	 8-4-3
a , 1

and a1 2 — b, 2 C 02 (cosh 2 u — sinh 2 u)= Co 	 8-4-4

so Co is indeed the focus of the ellipses.

If we look at a constant v = v1 then

x= a, cosu
y = b2 sin u 

which form hyperbolae 	 8-4-5

Thus constant u forms ellipses and constant v form hyperbolae that intersect at right angles
to the ellipses.

We can now find our complex potential ,C1 = 0 + = Aw + B = A(u + iv) + B	 8-4-6

Here on u = u2, 0 =0 Au2 + B = 0

u = u1, = Vo 	+ B = Vo

So that we find:

V
—	 0 A 

2(Zi1 -

B — — Au2 - 
V u0 2 

8-4-7

8-4-8

8-4-9
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So then 8-4-10

which is the same solution obtained for the case of the concentric circles.

8-4-11

Now referring to equation 8-4-1:

x = Co cosh u cos v
( igu

= Co cosh u2 — 0 cos 	 T)
V

and

y = Co sink u sin v
\

i Su
= —Co sinh

(

 u2 — 
Su 

0 sin 	 IP	
8-4-12

V I 	Vo I

This gives x and y in terms of the potentials 0 and T .

Now the current in the central conductor can be found in the same way as in section 8-3. As
before:

/ = —6‘11 	8-4-13

Once again:

Vn

Ul — U2

scp.	 Vo

U1 — U2

So the current is /0 =

2n-Vo

it1 — it2

2 irVo

U2 — 1

8-4-14

8-4-15

8-4-16
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In space and time the field is:

F = i(cosk o (t — z):(1+d)(—V 2 0)

0

where V,0 =

8-4-17

8-4-18

[see Diarnant, p 201]

where F = x/ + yi .

—
80

The impedance is Z, — V° = 
— 	

"2 	 8-4-19
2,7r



8-5 Transmission Line with a Concentric Circular Cross-Section and a Dielectric-Filled
Annulus

We need to first find a solution to the wave transmission problem using the modified Maxwell

equation. Recall equation 6-3-2:

W.* — 	 or D *F 	 J 	 (see sections 6-2 and 6-3) 8-5-1

Assume, in keeping with the previous results, a form for F in the annulus as follows

F = i(cosko (7- — z))(1 + ik)E0 8-5-2

where E0 = —V 2 0 as before. 8-5-3

Then exactly as before DF* = 0 8 -5 -4

Now we use this modified result to solve for the circular cross-section with a dielectric in the

annulus exactly as before. The problem is represented in Figure 8-5-1.

W Plane

Figure 8-5-1: The Dielectric Filled Transmission Line
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Thus we have

z = (exp 0(cos v + i sin v) or

C2 = 0 + iT Aw + B A(u + iv) + B

On the boundaries: u ul, 0 = 170

u = u2, 0 = 0

So

A = 
(111

k
–

O
 112)

V u
B –	 0 2 

(u1 - u2 )

V
Again we have n 	° 	u-u2 + v)

w = lnr +/61 –7c <96 71- 8-5-5

8-5-6

8-5-7

8-5-8

8-5-9

8-5-10

In order to find the current in the central conductor, first note that Maxwell's third equation (M3)
.... 	 1

now reads V x - OrE = 	 J . Also let us define the local impedance as
E C

1
— = /11.t – 	 . Now take a simple path, S, from one edge of the branch cut anti-

clockwise to the other side of the branch cut.



Then

=pods-

	

\ 	
aE)

	fs	 dSJ+ c
z-

=E CS (V x 6) 0 dE
8-5-12

=ecfGo dr-

= – CcfVtif c, cIf

= – e

co
—
1 

in SI units.where ec= — m Heaviside-Lorentz units and e c 8-5-13
1 77

2.71-170 	27-cVo
8-5-14The current is /0 = – E cblif –E c 	 –Cc

117 	 In -ka

1 	 In
8-5-15The impedance is Z, –

ec 27z-

bSo 	 in 	 Zthat 	 Heaviside-Lorentz units 	 – 	 lnand in SI Z =	 In77 	b 8-5-16
° 	 27z-co 	a	 27z- 	 a

The field in space time is :

F = i(cosk o (2- – z);(1 + ik)(– 020)

Ar V
°i(cosko fr 	 P

8-5-17
=	 –	 1 + ik)	 b

where P is the unit radial vector perpendicular to k .

27z-V° 8-5-17Also I	 ko 	in(cos 	 – z)) , varying 	 time.= 
In ba
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8-6 Transmission Line with Concentric Ellipsoidal Cross-Section and Dielectric-Filled
Annulus

The solution in section 8-5, namely F = i(cos k0 — z))(1 + i	 0 , with Bo = —V 2 0 , remains

valid in this case, where now 0 is the solution for the ellipsoidal case as in section 8-4.

Thus z = Co [coshu cosy +i sinh u sin vj = [x + iy]
	

8-6-1

W Plane

Figure 8-6-1: Dielectric Filled Ellipsoidal Transmission Line

= + = Aw + B A(u + iv) + B 	 8-6-2
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As before we have this solution:

(u1 — u2 )

V uB _  0 2 

(u, – )

So then II– 
V° \ (w– u2
- U2 )

-(u + iv) = u, u2  (i0 + it15)+ u2 =
V,

Now referring to equation 8-4-1:

8-6-5

x = C0 cosh u cos v 	 y = Co sinh u sin v
r Su ' " &i and r 	 au ■ rSu

= Co cosh u2 – — 0 cos - W --7- –00 sinh u2 – — 0 sin — W
Vo	J CVO 	. Vo 	 , Vo 	 .1

This gives x and y in terms of the potentials q and

Once again:

'If = 	
V

1/2 
v

2R-Vo
= 	 8-6-8

– /12

Now the current in the central conductor can be found in the same way as in section 8-3. As
before:

/0 = – E cbT	 8-6-9

where E c = — in Heaviside-Lorentz units 	 8-6-10
17

A =
8-6-3

8-6-4

8-6-6

8-6-7
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and e c = —
77

The current is /0 = — E cbT

in SI units

27rI7 	 27-c 0=E c	 — c c

8-6-11

8-6-12
it	 —,

In space and time the field is:

1= i(cos k° (z —z)X + k)(— V 2 0) 8-6-13

OF

where N7,0 =-
00

8-6-14

00

[see Diamant, p 201]

where F = xi + yj

2,d10
The time varying current is / (cos k0 (z-=G c	 — 8-6-15

The impedance is given as follows:

in Heaviside-Lorentz units Z 8-6-16
°

—
2irc0

774577and in SI = 8-6-17
2,r

This chapter illustrates the practical use of quaternions in the field of electromagnetism.
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