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1 Introduction and Historical Overview

In 1805 a truly remarkable mathematician was born in Dublin, Ireland. This man eventually
became one of the most influential mathematicians of the 19th century. He was Sir William
Hamilton. This childhood prodigy would have a profound influence on many fields of mathematics
and physical sciences. In this paper his greatest legacy is going to be explored: that of
quaternions. Hamilton believed that his invention of the quaternion; a hypercomplex set of
numbers representing space-time; held the key to the future of mathematical physics. Although
Hamilton’s belief in his invention never wavered, it was not until the middie of this century that his
achievement was recognized as having true merit, with the advent of quantum mechanics and
special relativity. Although quaternions hasn’t and probably never will become the predominant
mathematical method of physics; his early work and the invention of quaternions influenced and
fostered the modern vectorial calculus we use today. In these and many other fields Hamilton’s

works still influence today and most certainly will into the next century.

In order to appreciate the nature of Hamilton’s invention we must understand the state of
mathematics, physics, and science as it existed before and during Hamilton’s lifetime. In the late
18" and into the early 19" centuries' mathematicians became interested in representing “directed
lines of force” in physical problems in some other fashion other than Euclidean geometry. By this
time the concept of a complex number was established and understood by most mathematicians
although it was treated more as a mathematical oddity than a worthwhile pursuit of study. Caspar
Wessel was the first to recognize the use of complex numbers in representing two dimensional
space. Many others also developed this area. These works prompted many to try to extend their
use to three dimensional space. Well before Hamilton ever became interested in this problem no
fewer than ten other mathematicians had tried to find a triplet set and failed to propose a
satisfactory system. Hamilton also attempted this problem and failed. However through this early
work Hamilton for the first time rationalized complex numbers as ordered pairs of real numbers
rather than geometrically. This was very satisfying to the scientific community as many
mathematicians did not like geometric proofs, but preferred algebraic ones. Hamilton thus became

interested in the study of complex numbers and what we would call today as dimensional analysis.



Around this time Hamilton also devised a general set of equations of motion for multi parameter
systems of motion ( Hamiltonian theory: “On a General Method in Dynamics™). Through this
work and his failure to solve the triplet problem Hamilton began to explore what he called time
development. Basically Hamilton, being a bit of a metaphysicist, believed that time evolution was
an integral, nay indistinguishable part of any system involving motion. This prompted Hamilton to
include time as a component of a directed line of force system of motion and in effect he began to
look for a four dimensional system instead of a triplet algebra. On October 16, 1843 Hamilton
solved this problem and stated the equation that forms the basis of his theory: i* = j* = k* = ijk = -1.
So momental was this flash of brilliance the he felt compelled to carve this equation on the
Brougham Bridge. Hamilton was a prodigious writer and wrote everywhere on anything suitable,

in this case while walking with his wife on the bridge and a pocket knife was handy.

Hamilton quickly developed a paper on his discovery and presented it to the Royal Irish Society
during the first general meeting of the session that November. Hamilton however took ten years to
publish a book on the subject but he submitted many papers to journals advocating the importance
of his discovery. “Lecture on Quaternions” appeared in 1853 and became his first true
mathematical book. This 500+ page book was well received but sales were moderate. However
mathematicians did not become zealot believers in his quaternion theory due to the fact that
“Lecture” is long, difficult, and included many complicated notations and terms representing
various quaternion types and operations. The only other mathematician that truly shared
Hamilton’s vision of the quaternion future of mathematics was Peter Tait. Tait was a Scottish
classmate of Maxwell at Edinburgh University. He ordered Hamilton’s book in 1858 only as the
title caught his eye in a publisher’s book list. Tait proceeded to go through the first six chapters
and asked Thomas Andrews to write Hamilton asking if Tait could correspond with him. Tait’s
first letter to Hamilton was a flattering introduction to Hamilton, however in the letter Tait claimed
that he got through most of the book easily and quickly. Hamilton did not really believe this claim
but he returned the letter. This became the beginning of a correspondence that lasted for the rest of
Hamilton’s life. Through this interaction Hamilton came to recognize Tait’s mastery of the subject
and Tait became a student and contemporary in the subject of quaternions. In fact Tait became

the most influential promoter of quaternions of the late 19" century.



Although Hamilton still worked on other areas of study and ran the Dunsink Observatory, he
believed that quatemions were important enough that he devoted 22 years of his life until his death
in 1865 on the subject. The majority of this labour was devoted to a second book meant to be a
practical guide on quaternions use. Tait was also writing a book on the subject but since he used
unpublished results given to him by Hamilton he asked permission to publish. Hamilton agreed as
long as Tait waited for him to publish his unfinished book. Tait followed his mentor’s request and
after Hamilton’s son published “Elements of Quaternions” in 1866 posthumously, Tait published
his “Treatise on Quaternions”. Although Hamilton intended this second book to be a guide it was
longer than “Lectures” and was unfinished. Tait’s book however is clear, concise, and complete
and thus became the actual guide on quatemions to which most interested scientists both then and

now refer.

During the last half of Hamilton’s life, and to the turn of the century, the groundwork that leads
us to modern vector calculus was being laid. Grassmann, Gibbs and Heaviside were developing
results, and notations (some of it borrowed from Hamilton) and applying it to problems in
electromagnetism and motion. Maxwell, being a friend of Tait, was introduced to quaternions and
in his famous 1873 paper on electromagnetism; he used his famous results and included quaternion
forms as well. However due to Hamilton slowness of publishing, and the complexity of his works,
quaternions were not recognized as being very practical. The Gibbs-Heaviside forms are easier to
use and appear to be a shortcut to a workable mathematics. It was not until the appearance of
relativity and quantum mechanics that the weakness of the Gibbs-Heaviside system was
recognized. About this time quaternions, as other of Hamilton’s mathematical theories, were truly
being looked at as being potentially useful. Some of his results were introduced into the modern
vector system but quaternion forms were not used. The strangeness of the quaternion forms can

not displace the more familiar vector forms that we rely on today.

Although Hamilton’s influence is still being felt in modern theory today, his belief in the
supertority of his quaternions has not been realized. It is important to note that Hamilton did
however create the first algebra that covered three dimensions and in doing so was the first to
abandon an algebraic law (commutativity). This encouraged others to leave the stringent rules and

customs of the past mathematics which led to our modem algebra and calculus. It is possible to



extract all modern vector calculus from the quaternion theory. In fact modern vectors may be
viewed as what Hamilton called the vector part of a quaternion. Hamilton was also the first to
suggest the notation, use, and operations of the Del operator V, recognizing its importance in the
field of physics. Hamilton also gave us many names and showed the use of many of the
components and operations of vector calculus such as scalar, vector, vector (cross) product, and
the scalar (dot) product. He also showed their important use in solving physical problems. Please
also note that in this paper we will be reverse engineering much of the quaternion theory from the
modern calculus. Thus throughout the work it will be assumed that the reader has some familiarity
with vector calculus. It is to be hoped that the reader will gain some appreciation of the practical

use of the quaternion.



2 Real Quaternions and Rotations
2-1 Definition and Algebra of Quaternions
Through out this work it will be assumed that the reader has some familiarity with vector
calculus. A normal vector (3-vector) may be denoted by A = Alf +A, j + Agl:: where f, j, kare
the unit vectors in Cartesian coordinates. Let’s explore the algebra of quaternions, define the

quaternion as ¢, = a+ A, where: ais a real number and A is a 3-vector.

Let us also define q, = b+ B asabovewithb#aand A = B.

The sum and difference is as one would expect; the “scalar” parts are operated on separately as

are the “vector” parts:
Sum: q, +4q, :(a+z§)+(b+l§) :(a+rb)+(ﬁ+ “) 2-1-1
Difference: ¢, —q, ={(a—b)+ (A ~ ]§) 2-1-2
The product needs to be looked at. Try finding 4 terms under normal multiplication:
4,9, = (a+}§)(b+l§) =ab+aB+bA+AB 2-1-3
clearly, aB = a(BlfjL sz +B, IAC) and similarly for bA .
A form for AB must then be found that makes sense mathematically:

AB = (A +A,]+ Ask)(B 7 + By + B5K)
22 ~2 ~2 ap ~n

+(Kia4B, +ika By) + (iia,B, +1iA,B, )



Following Hamilton; define: 7 =-1

J=-1 jk=i=-jk 2-1-5
]22:_1 12{:3:'—12{
So
AB = .(AIB1 +A,B, +A3B3)+ i(AzBs 'A3BZ) 2-1-6

Clearly the product of A and Bmust be AB = -(A ° ]§) + A x B. This is known as the

Hamiltonian Product and it is very important in quaternion algebra.

So a quaternion is defined as ¢, =a+A =2 +A1i + A;j +A31:: and makes sense
mathematically under the Hamiltonian product. Three identities of the Hamiitonian product are

shown below:

AA=(A-A)+AxA= —(Af +A;+Asz) =-l?§|2

2-1-7
If 7iis a unit vector, #° =1 2-1-8
AB+BA=-AcB+AxB-Bo-A+BxA
=2A-B+AxB-AxB
=2A0-B 2-1-9a
I DS
.'.AoB=—5(AB+BA)

10



One other useful vector identity is:

A=-d’A
= —AnA = —A(AA)
= —A(—fic A+fixA)
= (A~ d)i+A(A x A)
= (Ao )i+ (-~ (A xA)oi+ax(Ax )
=(Aon)i+fx(Axiy

=(Aof)i+AxAxh

Note: 1) sincenis a unit vector: fix (A x )= (A xfi)xfi=fix A x i

(brackets are redundant).

) Axi=0

This gives the parallel and perpendicular components of the vector.

2-2 The Conjugate, Modulus, and inverse of Quaternions

The Conjugate: As quaternions are a set of hypercomplex numbers, we need to look at

2-1-9b

2-1-10

conjugation and absolute values before considering division. If g =a + A the conjugate is

defined as q* =a-A

11



Consider the product;

@ =(a+A)a-A)=2’-AA
=a® (A2 + 4,77 + AK)

2-2-1
=a’+A’+A,+A]
=q'q
which is real and positive definite (positive and zero if and only if q is zero).
Now we can define the modulus of q:
ol =Vag* =g g =\a*+ 47+ 4,2 + 4. 222
The effect of conjugation on a product: consider
(AB)" =(-A-B+AxB)
(& )o(B)— (&) x (B
= (- R)e(-B)-(- A)(B)
=B+ Ax(-B) rrs
— _Bod—(-B)x4
=-BoA+Bx A4
=—AoB-AxB
- B‘xgx

Since the scalar part is not affected and the vector part changes sign the order is reversed

under conjugation.

AR 2
1 - 1 -
The multiplicative inverse: Let q ™ = —q " then q 1q = {[———Z—qu )q = i =l=qq Las

lal lal

expected for multiplicative inverse.

12



Thus the previous two sections have shown that for a real quaternion defined as q = a + A all

algebraic operations are defined. Thus quaternions form an algebra.

2-3 Euler's Formula and Quaternions

Euler’s formula ise” = cos@ +isin@ which can be used to represent complex numbers. Thus

there must be an Euler form for the quaternions,

Using q = a+ A which we can also write as = a+ Afl where 4 = l?ﬂ = \/Alz + A4, + 47

and 7 is a unit vector in the direction A is pointing (or fi =LA ), we can look for the polar form

ofq If r=lg=va>+ 4>

a A
Then we can define cos@ = 7 and sinf = -;

so a=rcos@ and A=rsinf

Then g =rcos@+rsin &

=r{cos@+Fsinf _ R
(,6 ) (since 72 =-1)
=re’

7o - . .
where e is a unimodular quatemion.

2-4 Unimodular Quaternions as a Group

There are four properties which must be satisfied for the unimodular quaternions to be a group:

closure, associativity, existence of an identity, and existence of inverses.

13



First: let set G of elements a, b, .. 3 a, b, ¢, ... € G be unimodular quaternions.
ie. a=e" =1+A=1+ia, + ja, +ka, 2-4-1

Since the unimodular quaternions are a subset of the quaternions, two of these properties are true;
namely associativity and the existence of an identity (namely 1). These have been seen for
quatemnions under multiplication but not explicitly proved. In fact they are included in our

definition of the quaternion.

Existence of Inverses: here the elements of the set a, b, ¢ all have the property |a[ =1 since they

,’:

. -1 -7 . . .
are unimodular and thus ¢ =g = e which is.an inverse.

Then

2-4-2

as required for the inverse.

Closure: Given a, b we need their product to be unimodular (in the set G).

ab(ab)” = ab(bxax)
=ala” still unimodular 2-4-3
=1

orif

a=et

b=e

2-4-4

14



O R _
Then ab = e e = ™ also unimodular 2-4-5

Thus all four properties are satisfied and the elements of set G are indeed a group. The following

properties are also shared:
-identity of the group is unique
-inverse of each element of the group 1s unique

-ab=acthenb=c->dual ile. ba=cathenb=c).

2-5 The Triangle Inequality

Before showing the quaternion form of the Triangle Inequality we need to

“and g, = r,e”” then

prove V4,4, .| =l Let ¢, =re

lqlqzl: ,Q1“q2l

,I.lerxgxrzerzgz — lrlerxgl rzerzozl[
{" 1"2[ = l’in"zl 2-5-1
Re(q 19 2) = Re(Ql)Re(Q:z)
nr, =nn
LS =RS

15



Now the Triangle Inequality: I% + q2| < [%I + qul .

9+l = (g +a)a" +4,7)
=04 09 T4 49
= ]qllz +{q2]2 a4, +(q1q2x)x
= lqllz + 'qZ[z +2 Re(qlqzx)
< l%[z g+ 2a,4,]
<la| +lal" + 2]
<(a)+ .

50 I% +92[ < [q1'+|q2]

2-5-2

q,

2-6 Rotations in a Plane Using Complex Numbers

Given the x-y plane as in figure 2-6-1. Let a plane vector be represented by 4= Alf + A2j and

the angle between the vector and the x-axis be 6. y A

The vector A’ represents the new position of A
after rotation through ¢ degrees about the origin

(active transformation).

NOTE: 1) positive rotation is clockwise, i.e. this

system is right-handed.

2) this is an active transformation due to the

fact that the axis remains fixed.

Figure 2-6- 1

In order to find the components of A’ namely A, and A, it is easier to use polar co-ordinates.

16



Thus vector 4 may be represented by:

A =rcosf
A, =rsin@ 2-6-1

r=|dl= 47 + 4

The rotation simply increases the angle between the x-axis and the vector A'tobe § + ¢ and

leaves the length of the vector, r unchanged. Thus the components may be found as

AI’ =r COS(9 + ¢) and Azl =r sin({9 + ¢) '
= r(cosH cos¢ —sin@sin ¢) = r(sin 6 cos ¢ +cosGsin ¢) 560
= (rcosf) cos¢ — (rsin @) sin ¢ = A, cos¢ + 4, sin ¢

= A, cosg— A, sing

. . N
or in matrix form: , =

[cos $ —sin q{ 4 } r63
A2

sing cos¢ | A4,
Now if we note the form of vectors represented in section 2-3, we recognize that vector A may

also be written as: 4 = A4, +id, = #(cos@ +isin 8) = re’® which is a complex form.

Now the previous rotation may be more elegantly written as:

2-6-4

£ . . . .
A =re'®?) = gitppi® = o7 4

17



To see that this represents the work shown previously note that equation 2-6-4 may also be

written as

A4 +id, =e*(4, +id,)
= (cos¢ +isin ;15)(141 + iAz) 2-6-5
= cos@d, +icosgd, +isingA, —sin g4,

and if the real and imaginary parts are separated:

Real: 4, =cos¢d, —sin@gd, Imaginary: 4, = cos@d, +sin @4,
as before but obtained in one equation much more easily.

Now a passive rotation in which the vector
remains fixed, and the axis moves, is illustrated in
figure 2-6-2. This rotation can also be viewed as
an active rotation through -¢ degrees. Thus the

equation representing this is

14

A =rel" =g 4 2-6-6

Example 2-6-1: An active rotation

Using complex numbers, rotate vector A=1+ \E} through 60 degrees in the x-y plane.

T
Vs i~
Solution; 60° = 3 counterclockwise = ¢ 2

18



A’ = 4e'* = A(cos% +isin%)

:(l+\/§i)(r§-+i§)
_3+3W3i-4i—43(-1)

2-6-7

2
-4 (33-9)

2 2
3“4\/——': (3‘/—;—4)4
= 7+ ¥
2 2

2-7 Active Rotations in 3-Space using Real Quaternions

In order to extend the use of complex numbers to 3-space, quaternions may be used since they
already have a unimodular form, and represent 3-space. It is also advantageous to find a formula

for the rotation of a vector about an arbitrary axis of 7 direction in 3-diamensions.
Try A’ =e™ 4 2-7-1
which will work only if 4 is perpendicular to 7.

To see why consider the case where 7 is parallelto 4 (ie. A= Af)then 4 should remain

unchanged:

A" = ed = (cos 8+ fisin B) An
= Acosbh + Asin 6i’ 2-7-2
=-—Asin @+ Acosba

which is no longer a vector!

We need to look for some properties of A that A’ must also share. The length of A’ must be the

2

Al = A" A 2-7-3

sameas A. So |24‘|2 =A" A=

19



butnote A" =—4 2-7-4
referring back to A'=e"4
A= A (") =—de™ 2-7-5
andthus 4" = - 4"
~Ade™ =-¢"4 2-7-6
which is not equal in general.

However the fact that the length must remain constant leads us to believe that the above formula,
equation 2-7-3, is a guide to the correct form. Look at the form A’ = RAR” where R is a factor
like ™. Apply this through the equivalent length requirement of equation 2-7-3:

(2) =(RAR*)
:RxexRx 2-7_7

= —RAR"
-

Note the reversal of order and the vector is unchanged as required!

But what is R? Equation 2-7-1 must represent the effect of R and R on the vector rotated through

0 degrees. This leads us to a form of R from equation 2-7-3. Let us move half of the factor ¢

through the vector respecting conjugation:

20



)

:ezeT(Az + 4,7+ A4, k)
eﬁ_f(Alengf+A e ]+ A4, engl;)

:eﬁ_;(Al(cosg-kﬁsing)er A, (cos + fsin )] +4 (cos + 718in 9)]2)
= eﬁ_f(Al(cosg-er ﬁfsin%) + 4, (cos—g—}' +7) sin-g) + A3( sk + ik sin -,f’-)) 2-7-8
= e%e(A1 (f cosZ —fising) + 4, (] cos— jhising) + 4, (JE cosZ — l:tﬁsing))
= e%(A,fe_% + Azje"ég + Aslge"g;ﬁ)

9 N N A i
=e*(4f + 4,7+ A,k)e*
—eTde®

Thus an active rotation in the arbitrary direction 7 is given by

— 8 ig

A'=e?A4e 2-7-9.

Let us check equation 2-7-9 under equation 2-7-3 and the case where A and 7 are parallel.

First:

= o"(~ AA)e™™ 2-7-10

which is fine.

21



And

~ 72 g
= Ane"2e 2 2-7-11
4

A isleft unchanged as required. Thus equation 2-7-9 is indeed correct.

A quick shortcut: We can make use of vector behavior by separating A into perpendicular and

parallel components:

parallel is the projection of Aon 7: A4, = (2 ° ﬁ)ft 2-7-12a
perpendicular is what is left: 4, = A - 4, 2-7-12b
Suchthat A=A, + 4, . 2-7-13

The parallel component is left unchanged by the rotation and the perpendicular component

can be handled by this simple formula: Zli' =e" 4 | 2-7-14

Thus the general rotation may also be found from: 4" = 4, + ¢4, 2-7-15

22



2-8 lliustrative Examples

a) Rotate the vector 4 =27 +27+ k through 90° about an axis pointing in the
direction B = 4 + 3k .

Soluti d a directional unit vector 7 B __4j+3k 4A‘+3/€
QIUEIONn:. weneea a SCLIONal Nt veCtor =7 = —F7————— = -
B~ Jor16r9 5775

now apply equation 2-7-9:
Ao ne

A'=e? de * =(cosZ+risinZ)A(cosZ - isinZ)
Ay - (a4 a2 - )]
=4~ 45 +id - idn
- %[Z - Z;—(4j +3k)+ -51-(4]" +3k)4 - —;—(4]’ + 31€)2—§—(4j’ + 3k)} |

254 - 5A(a]+3k)+5(47+3k)a - (4] +3k)A(4] + 3£)]
12545027 +2f+ E)4j+38)+5(4] +3K)(2f + 2]+ k)
_53_- (47 +3k)2f + 2]+ )47 +3k)

1254 -5(11+27 — 6] +8k)-5(-11+27 - 6] +8F)
36__ (4j+38)11+27 - 6] +8k)

:252 ~10(27 - 67 +8%) - (44] + 33 +507 + 6] - 8k)]
:25(21" +2]+k)-10(2f — 6]+ 8F)~ (507 +50] - 25/5)]

2(25 - 10 - 25)7 +2(25+ 30~ 25)] + (25 - 80 + 25)k |

- 107 +307 - 15K]

23



b) Using the Shortout: Rotate 4 =127 —3] - 9 through 37° (B8 = cos™ 0.8) about
B=2+2j+k.

Solution: ﬁ—ﬁ—w—l(zﬁzmla
TIB T Vatdsl 3T

,,-—L(lzz 37 ~9k)e (21+2‘]+k)} (2F +27 +£)

=[8—2—3]-§('21 +2j +k)

:(2f+2}‘+l€)

A4, =(127 37 - 9k)~ (2 +27 + £) = (107 ~5] - 10k) 4, + ™ 4,
=4, + cos(cos 0. 8) +n sm(cos 0. S)A

1

:(21'+2j‘+Z§)~+(1—80—+§(25+2j+k)160)(101 ~5j— lOk)

(27 427 B) {2 o L oi 427 4 ) (a7 - -24)

( (87~ 47-8%)+ (4-2-2) +(- 4+ D +(2+4)] +(~ 2~ 4)F))

= (2 +2j+1€)+((8f ~4j Sk) (03 +67-6k))
+(sf

24



3 Complex Quaternions and Special Relativity
3-1 Definition of a Complex Quaternion

A complex quaternion extends the algebra of quaternions to include imaginary quantities as part

of the quaternion. In order to designate the real and imaginary parts of the complex quaternion we
must introduce a fourth square root of -1; as i; which commutes with [ ,j and k ie. il =] etc.
The complex quaternion may have imaginary parts of its parameters namely (a, A;, A,, Az) such
that
O=(a+ib)+(4, +iB )i +(4, +iB,)j +(4, +iB,Ye=a+ib+A+iB  3-1-1
Thus Q, a complex quaternion, may contain a real number, an imaginary number, a real vector,
and an imaginary vector.

Now that complex quantities are present in the quaternion we must note that addition and
subtraction are still well defined if the real and imaginary parts of the quaternion are grouped and
acted on separately. Multiplication is also well defined. However we will now need three types of

conjugation operations.
1) Complex Conjugation: changes the sign of i but leaves vectors alone. Denoted as Q* (Q star).
Q" =a-ib+A-iB 3-1-2

2) Hamiltonian Conjugation: leaves i alone but changes the sign of vectors and reverses order.

Denoted as 0" (Q cross).

O  =a+ib— A-iB 3-1-3



2) Hermitean Conjugation: changes the sign of vectors and of i and also reverses order.
Effectively both Complex and Hamiltonian conjugation. Denote as Q" (Q dagger).
0" =(0") =(0") =a-ib—A+iB 3-1-4

Table 3-1-1 summaries these effects on different forms of quaternions, g; ; and on a complex

number, C.

Table 3-1-1; Effects of Conjugation

C=a+ib a—ib a—+ib a—ib

g, =a+4 a+A | a-A | a-A4

q, =re A8 re™ re re ™

NOTE: any two operations applied to a quaternion is equivalent to the third.

x T)"‘ 3-1-5



3-2 Absolute Value of Complex Quaternions

The modulus of real quatemions was well defined previously using the Hamiltonian conjugation

such that; given g =a+ A=a+ Ai + 4,] + A, k as a real quaternion then
lg|=gq* =a®+ 42 + 42 + 42 32-1

Note that this holds under hermitean conjugation as ¢~ = qT . Before considering the modulus of
a complex quaternion, Q, we must note the restriction on Q if it is equal to one of its conjugates:

0=0 _)Q:QEQX _ (a+ib+Z+iE);r(a+ib—Z—iB)

=a+ib

0=0">a+4 3-2-2
Q=-0" —ib+iB
0=0" > a+iB

Q=-0" »>ib+ 4

Also the order in which the Hamiltonian and Hermitean conjugation are performed must be

considered due to the reversal of factors:

XXQX — QQX
0

o) =
o)

S}
QQ

(

(00")" = 0™ (0" = 00"
(0'0)' =0"0

Q
1l
Q

3-2-3

{(note that the duals of each conjugation operation are not the same)
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In trying to find the modulus of a complex quaternion it makes sense to follow the form for the
real quaternion namely equation 3-2-1 or JQ" but from series 3-2-2 this results in a complex

number. However we know that if we multiply a complex number by its complex conjugate a real

number 1s formed:
— QQx Q*'QT 3.2-4

3

Since 00" =|0f" and (Q0")

I

OQIZ) = lle this expression will lead to
]Q‘4 = 0Q"Q"Q" which is real and non-negative. Is it a modulus? This is answered if the

4
expression of }Q' is positive definite. Consider

O=1+in
Q" =1-in
O = 1-ih 3-2-5
o' =1+in

Then Q0" = (1+iA)(1—iA) = 1> = (#)* = 1—1=0 sothat |Q|" is not positive definite. So
lQl = [QQXQ*QT ]% cannot be a modulus. We have two types of complex quaternions:
1) Singular [Q] = 0

2) Non-Singular |0] # 0



3-3 Exponential Form of Complex Quaternions

From real quaternions we saw that exponential forms can be found using Euler’s formula. Again

complex exponential forms may be found for complex quaternions except that a distinction must be

made between singular and non-singular quaternions.
1) Non-Singular: Q = re'%e™e

— reié'ein aem¢

¢ ¢

ne™™ 3-3-1

r:[Q[':tO

where i’ =¢e”

i8 1+in
2

2) Singular: O=re

o 1+
=re'’ —e
2

where ' =e

r¢fo

g

e 3-3-2

In both cases: € = cos@+isin@ and £™ = cos¢ +sing

since (iA)’ = (i 2)(17:2) =(~D(-1) =1, we have:

2 3
" =1+ (if)a + (i)’ 5“57 + (@A) %Jr. N

2 4 3 5
a [24 A (4 (04
:I+———+——+...+in(a+—+—+...j 3322
21 4 31 5

=cosha +#isinha



3-4 The 4-Vector and 4 Co-Ordinates

Regular 4-vectors represented by the parameters (ao ,a,,4, ,as) may be expressed in complex

quaternion form as:
A=A, +id 3-4-1
where A (A “bar”) is our notation for a 4-vector
A, is the scalar part

A4 is a real vector.

Thus an event given at (t, X, y, z) may be represented by a 4-vector as
x=t+i{xi + yj+ k)= t-+i7 3-4-2
An interval may also be represented by a 4-vector as Ax = A7+ i(Axf +Ayj + Azlg) .

These 4-vectors as quaternions have a special property that we can use to our advantage later:

they follow the form of 3-2-2 ie. 4= A" . Thus they are invariant under Hermitean conjugation.

3-5 Invariant Length of a 4-Vector

Look for the modulus of the 4-vector quaternion. It should be invariant under transformation

between reference frames, since the 4-vector quaternion is Hermitean i.e.

A4 =4"4

= 4> —(id) 3-5-1
=4y -4 -4 -4



We can now define three invariant transformation types:

1) AA* >0 A istime-like, magnitude 4 A 4" 3-5-2a
2 AA" =0 4 is light-like 3-5-2b
3y AA* <6 A is space-like, magnitude — 44~ 3-5-2¢

A 4-vector representing a point in space-time, has the form- (z‘, X, ¥, z) =x= t+i(xf + yf + zlg)

and we can form the invariant generating:
x L . 2, =2 2 I S TR 2 2, 2
xx" =t +iFft—iF)=1>+F> =t +'(x~z~+yj +zk) =t —(x +y +z) 3-5-3

Similarly for an interval Ax = Af +iAF between two points in space-time. We have
AxAx™ = (At +idF) (AL —ibF) = At* —(Ax? + Ay* + AZ?) 3-5-4
According to the classification in equation 3-5-2 the interval can be time-like, light-light, or

space-like. However if we wish to discuss the velocity of a real particle; we should set the 4-vector

mvariant length as time-like. So

_ Ax
i BX 3-5-5
i

where Ax = Al +iAV-

and  AT=+A” — AX> — Ay? — Az? = JAxAx" >0

Thus we will deal with proper time intervals of invariant length of At
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3-6 Scalar Product of 4-Vectors

Given 4= 4, +i4d B =5, +iB and noting A" =4, —id=A4"

Look at the modulus of A4 first:

-2

A = a2 42 = & ”"
=Al-Aed=A}+ 44
But A7 — |4 =(4,—id)(4, +id)= A" A andalso AA" = A"A=AA" = A" 4.
Thus the scalar product of 4 with itself is
3-6-2

4 = dod=44"= 44

which follows the known scalar result for normal 3-vectors. This is also true for B.

Now let us explore the scalar product of two independent 4-vectors: 4o B.

Define (4 +B)o(4+B)= Ao A+BoB+24B

Since (4+B)4"+B')= 44"+ BB  + AB' + BA",and A4’ = Ao A andsimilarly for B

we must have:

24°B=AB"+B4" . 3-6-3
Thus we can now define the scalar product of two 4-vectors as:
A-B=}(4B"+B4’) 3-6-4
3-6-5

or equivalently: 4oB=44AB" +BA"}=. — A,B, — 4,B, — A.B,
] 1



3.7 Lorentz Transformation of the Co-ordinates

In order to now deal with relativistic transformations of 4-vector co-ordinates, a form of the
Lorentz transformation {L.T.) must be found. As shown in previous sections the length of the 4-
vector must remain invariant under L. T. and also the resultant transformed 4-vector must remain
Hermitean. This suggests that the required form is similar to the quaternion rotations form. Let L

represent the L. T. operation which is a complex gquaternion of unit modulus (non-smngular). Thus
the formis [ = e“e™e” andthe L.T. of A is something like A4 = L AI” which is linear.

14
Now let’s examine the operator L. First in L the term ¢ will commute with A and cancels out

.8 ~ g
—i%

e”* in L' and thus is redundant. The term €™ is a rotation in 3-space which only acts on the

imaginary vector part of 4. This effect is illustrated alone below:
(4,)e ™ +e™(id)e ™ 3-7-1

which only rotates A through 0 about an axis of direction 772 .

This operation has been covered previously and is not important now in discussing the L.T. Now

only the term €™ isleft . This will be known as the Lorentz Boost. Its effect will be to

relativistically add the velocity V to the system as a whole (co-ordinates, velocity, and momentum)
or if you will “boost” the system tc a new value. This boost can be viewed under two cases as

were the rotations:



Case 1) Active Boost: The system consisting of objects with velocity, co-ordinates, and

momentum has a velocity V relativistically added.

' sad

ie. A =e" g% 3722

Case 2) Passive Boost: The system is transformed to a new reference frame traveling with

velocity V relative to the old frame and all measurements are thus measured from the initial frame.

3-7-3

Thus the L.T. is a product of two terms representing a rotation and the Lorentz boost (relativistic

shift).

However, so far we have not discussed the form of 4-velocity and 4-momentum; but have just
assumed that they are time-like. This is to say that they act similarly to 3-space velocity and
momentum. We have in fact assumed that they are time derivatives of the co-ordinates. The pext
section will clarify this for the time-like condition for 4-velcotiy (we have in fact just “cornered”
our options on 4-velocity and 4-momentum). Recall in that the time-like condition was chosen in

section 3-4 when defining the 4-vector so we are correct in assuming the time-like condition.

3-8 4-Velocity, Intervals, and Rapidity (o) in Space-Time

If we set an object moving in space-time with a velocity then the interval between two positions

(events) is given by:

Ax = At +iAF 3-8-1

34



The form of velocity in Newtonian-Euclidean geometry is ¥ = A7 where At is invariant. Then in

4-space we would need: u = A: where At is the invariant time-like length of the 4-vector Ax
T

(same m all frames). Thus
At (Ax. Ay . Az ~
U=—+i—i+——j+— :(uo,ul,uz,ug) 3-8-2

where AT®= At® -Ax*-Ay* -AZ*
We can now use space-time relationships to define the rapidity o of the object as
o=tan" v 3-8-3
This 1s the angle of the Minkowski triangle given in hyperbolic trigonometry
ie. At = At cosh o
|AF| = At sinh o

v=A¥7 /At =tanh

Limtsa>0;0<tanha <1

1

If we also define ¥ = (l - vz)_E =cosh a 3-8-4
Thy +1i + v t+’—-| d 3-8-5
U=1u,+iil= = i -8-
M E= 4 Y At At

Alsonote that . —u} —u, —u. = 1. Thus every 4-velocity of a real object is a unit time-like

4-yector.
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A special case: Photons

Consider the interval Ax between two events on the world line of a photon (At = 0).

—=c=1
At 3-8-6

L AT = AP AP =0

At Ax
so u, = A“ , U = A_’c etc. are undefined. This is the limiting case where ¢ — oo yielding the
T
speed of light.

As with all unit 4-vectors; 4-velocity has an unimodular form. We can find this by recognizing;

At = Arcosha
= : - 3-8-7
A¥ = Arsinhan
where 7 is the position vector.
Ax = At +IAF = At +inAr
= Ar{cosha +ifisinh @) 3-8-8
— Az_ eiﬁa
: Ax ifa
And thus the 4-velocity can be found as # = A—— =e 3-8-9
T

which is a nice simple form.
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3-9 Lorentz Transformation of 4-Velcoity

I S .
We had for 4-coordinates a form of the passive Lorentz boost: x =e"2xe " * . This holds

4
equally well for an interval Ax . We can now use the definition of 4-velocity using the invariant

length to find the form of the L.T.

el ‘ 3-9-1

where u is given as ¥ = u, + z'(ulz' +u,j+ u3k) .

This is the same form as for the co-ordinates which is not surprising as we laboured to set the 4-

velocity to be time invariant. Thus the rationale to set At invariant is now clear.

This example will illustrate the nature of the previously derived 4-vector L. T. we will see that it
can be viewed as a passive “rotation” in space time. Now we will use matrix method of standard

L.T. to derive the quaternion form.

Let a primed frame be moving at v, in the x direction relative to the inertial, unprimed frame

represent the transformation; under the L.T., of an object’s world line AB.
Th h ! d A’ ¢ Ax
en ¥ =cosha = —==== an =y — Vo Ax.
/1 . v2 [} 0

In order to simplify the algebra we can express each individual element’s transformation in a 4

element column matrix;
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I_At’ Yo —%¥ O O—I
le' ~YoVo Yo 00

At

Ax

Ay 3-9-2
| Az

T ) 0 10
Az’ 0 0 0 1
For now we can omit Ay’, Az’ as they remain unchanged.
™ ( At' 1 -y, At 103
us LAXT' =7 —V 1 Ax e

However we know from the Minkowski Triangle in the space-time diagram that v,= cosh o and v,
=tanh a ( see section 3-8)

At' cosha —sinha || At .
Thus A 17| —sinha cosha | Ax | ™ recall that ™ = cosh & + i sinh ¢ and we can

combine this 2 X 2 matrix into a linear equation:

At' = Afcosha — Axsinha

3-9.
Ax'=Axcosha - Afsinhe o4

Now substitute for A7’ and Ax’ from 3-9-4 and we find

At' +ifiAx’ = At cosh @ — Ax sinh ¢ + i Ax cosh & — At sinh @)
= (At +ifiAx) cosh o — (ifiAt + Ax) sinh
= (At +inAx) cosh o — iﬁ((z‘ﬁ)z At + zﬁAx) sinh &
=(cosha _ sinh a)(Af +ifiAx) 3-9-5
= e (At +ifiAx)
= e_iﬁge_ﬁ% (At +inAx)

o

Lo -
=e¢ 2(Af+ifAX)e >

noting that 7> = —1, i = —1so (iA)’ =1
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Does this form hold for Ay’, Az" which we omitted? Consider this:

i(jay" + kAz') = i{ jay + kAz)
= e_iﬁ%eiﬁgi(}‘/ly + IQAZ)
L a 3-9-6
e Zje (}‘Ay + ]’C\AZ)

A
i

= e_iﬁ%i(j'Ay + lgAz)e 2

Thus if we let AK, = At + i(ﬁAx + JAy + I»:Az) we have a L.T. of the form

@
o AL i o . : .
Ar =e 2Are ? which is the same form previously derived and is indeed correct.

3-10 Examples of the Lorentz Transformation

Example 1 Frame O' is moving at rapidity o = In(3) in the positive z direction relative to frame O.
In frame O, event A occurs at (t,x,y,z) = (5,2,3,4); also, a rocket is moving at rapidity B = In(2) in

the y direction. Find the co-ordinates of event A and the 4-velcoity of the rocket in frame O'.

Solution: In frame O we know 4 = (5,2,3,4) =x=95 +i(2f + 3}' + 41;) 3-10-1
apply transformation: e_ﬁzg = —1—(2 - i/:) 3-10-2
V3
since
1 2
h—In3=—F
cos > n 3 s
inh ! In3 1 o
sinh—In3=—
2 VE]



Then

_Jg’ = %(5-?—1(21 +3]+4A))e A

_ ?/??/?(2 — k(5 +i(2F +37 +4£))(2 ~ i)

= %(2 - ﬂ?)(lo +i{4f +6]+ 812)) ~ ik ~*(2(~ 7)+ 37 +4(- 1)

S
—

2—ik)6-+i(4f +6] +3k)+ 37 - 2j) 3-10-4

[

[

= ~(12+24(47 + 6] +3) + 67 ~ 4] ~ ik —*(4] ~ 67 +3(- 1) ~1(3] ~2(-7)))

bt 2

= ——(9 +z‘(6f + 9}))

=3+i(2f +3j)

|98

Ax
in0: u= yoiatd # = cosh(In2) +ij sinh(In2) = (5 +3i)) 3-10-5
T

m Q"

1 3-10-6

20+i(12] - 208) + 67 — 6 +5- 317]')

1!
—
Sl
i— r— r—

25+i(9] - 20%))
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3-11 4-Momentum

We expect the 4-momentum to transform like a 4-vector, so we can follow the 3-space definition

)

=mv 3-11-1
Thus P = E +iP = mu = me™ where m is the mass of the particle. 3-11-2

Then also energy: E =m cosh(c) and momentum: P = m sinh(c). Again 4-momentum is time-like

but no longer a unit 4-vector:
PP =me™me™* =m® = (E +z‘?)(E - z'fj) =F* — 1}3‘2 3-11-3

For a zero mass particle we will not have a 4-velocity # , but we can define

P=E+iP

PP =E"—|F =0 3-11-4
E =|P|

which is expected.

3-12 L.T. of 4-Momentum

Again since 4-momentum is a 4-vector we can find the required L.T. by directly following the

definition of momentum and using the known L.T. of 4-velocity. Then

=e ‘’mue "2 3-12-1

as expected.
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3-13 Invariance of the Hermitean Property, Scalar Product, and Proper Intervals under
the Lorentz Transformation

Recall in sections 3-4 and 3-7, these properties of the 4-vectors and of the Lorentz transformation

acting on them:

A=A4"
A =4
A = 1A 3-13-1

r 14 T
Is this Hermitean property conserved under the L.T.? ie.isittruethat 4 = (A_ )

(4) =(zazy
_ (LT )T AT It
=LA T 3-13-2
= LAI'

t

4
not surprisingly it is conserved.

Recall in section 3-6 the scalar product of 4-vectors was defined as
4°B=3(4B"+BA")=1(4B" + B4") 3133

Now i1s this invariant under the L. T.? Consider



- jA(E) +§'(4')XJ

= zarr (LBLr) + L;B_LT(LALT)X]

= 4[24 (' Br) + 18I (1 AL)]
LA L BL + LB L AL
= 3|LABL" + LBAL']

3-13-4

So we see that the scalar product of 4-vector is indeed Lorentz mvariant.

3-14 Equation of Motion and the “4-Force”

Again 3-space results can be used as a guideline for finding the 4-vector equivaient. From

Newton’s second law we know: =F 3-14-1

dP
Thus the direct form for 4-vectors should be like —d:; = f assuming that mass is constant (that is

not undergoing chemical change, undergoing an inelastic collision, or radioactive decay).

The question is what does f look like? It must act on a particle causing it to travel on a
trajectory. This is to say we must be able to solve for the new momentum of the particle,
P(7 +dr) from an initial momentum, P(z) over a proper time interval. We know that this

change must be dus to the Lorentz Transformation of the 4-momentum.
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Recall that we had:

; a 6 N3 -3 9
w2 i -

2 p,a M "1 M3
P =e Pe e Ze Pe 314

= LPL" = exp(L)Pexp(L")

where Lis a complex vector.

So let us effect this transformation on the new momentum:

P — P(r +dr) = L(d7)PL' (d7)
= exp( L(dz)) P exp( L' (d7))
p(MdT)P exp(M Tdr)
+ Mdr)P(1+ M'dr)
P+ PM'dr + MdtP + MPM"dz?
= P+(KLP + PRI )dz +0(dz?)

3-14-3

where M is an arbitrary complex vector.

3-14-4
. dP P+ PIl" = f
d’l‘

so P(t+dt)=P+dP=P+(MP+PM")dr

Which is consistent with Newton’s second law. Thus we have the equation of motion in quaternion

form for a particle.
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3-15 Lorentz Transformation of the 4-Force

In order to find the L.T. of this 4-force we need to recall that dz is invariant under such a

transformation. With this knowledge we can easily act the L.T. on this 4-force:

L%ﬁ = L(MP + PM")I!

= IMPI" + LPM'I"
=ML LPLY + LPL' LM IT 3-15-1
M= IML,

W = (L) = AL

‘We now have both the equation of motion and the L.T. for the 4-force.
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4 Electromagnetism: Microscopic Theory
4-1 Unit Considerations

Before progressing on further to special relativity or EM theory, we must look at units for space-

time. For the time being, for simplicity, set ¢ = 1. We have three common unit systems to choose

from:

Table 4-1-1: Systems of Units

Heavyside Lorentz Guassian MKS (rationalized)
€9 1 1 107 /4nc*
Ho 1 1 4m/10
D E+P E+4=P eoE+P
H P-M b-4xM (1/pe)B-M

In order to simplify the algebra as much as possible the Heavyside Lorentz system will be used

(although any system of units is valid).

4-2 Vector Identities

Before we look at electromagnetism we need to have quaternion forms of partial derivatives, and

some identities. First look at quaternion calculus:

Recall in section 2-1 we had written A8 =—-AoB+ Ax B 4-2-1
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we can then conclude:

|

1(AB+BA)=—A0B
fam m o = 4222
HAB-BA)=4AxB
Now let us define the “Del” operator: V =74, + jé’y + lgé?
Thus
V¢ =grad ¢
- - = - - 4-2-3
VA=—-divA+curl A=-VoA+VxA4
The Laplacian: V? = VV = ‘(0’;2 + 0”},2 + 5'92) =-A 4-2-4

Note the negative sign here. So the gradient acts like a vector and the Laplacian as a scalar.

Similarly many other identities in three co-ordinates are also valid.

4-3 The Differential Field Operator

The scalar field operator should be invariant. Given ¢, a scalar field then d¢ should be the
result of a scalar product of two 4-vectors. Let us try to decompose them:
dp = gt +8pdx + E,pdy + 8 dz
- [é;¢— (ol +o9)+ o’;¢/€)] o[de+i{etcd + b + k)|

4-3-1
=[(2-v)g]-[ax]
= D¢ o} d E
Thus the 4-vector field operator or 4-gradient; is 4-3-2
Now look for the Laplacian of this operator. Consider D" = & +iV 4-3-3



Then

t

DD" =(q -iV)g+iV)=D"D

— 0»‘;2 + VZ

=3’ -A 4-3-4
=g’ - ox* - oy’ - o7

=]

This 1s the D’ Alembertian operator.

4-4 Conservation of Charge: 4-Current

If we wish to look for 4-vector forms of Maxwell’s equations we need to consider charge. We

expect charge to be conserved. Recall from vectorial Electromagnetism:

charge density p from Q= J' pdV 4-4-1
14

current density J from [ = Jj o AdS 4-4-2
S
The 4-vector form will allow us to combine these scalar and vector quantities into a ”4-current”.
Namely: J = p+iJ 4-4-3

For charge conservation to be true mathematically

%+V07:0<:>Dol:O@’(é’t—iV)o'(p+i.7)=0 4-4-4

which is an equivalent form for a 4-vector!
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4-5 Maxwell Equations in Quaternion Form

‘We have four known results:

h’it

Vel =p
VoB=0
)
Vx B2 4-5-1
P J
. OB
VXE-}-E?—O

where these are the microscopic (Lorentz) forms of Maxwell’s equations.
First we need to define the E&M field as F = —B + ik = i(E +iB). 4-5-2

We expect that Maxwell’s equations will be condensed as the 4-vectors carry the scalar quantities.

Since D is operating similarly to Del let us make the claim that:

DFf=Jo D'F=J" 4-5-3
To prove this use Maxwell’s equations and the identity VV = —V oV + V x V7 4-5-4
Proof:
DF" =(g —iV)(- B—iE)
=-gB~idE+iVB-VE
=-B~idE +i(~VoB+VxB)~(-VoE+V xE)
=(-3B+VeE-VxE)+i(~-gE-VoB+VxB) 4.5-5
=VoE~(VxE+8B)~i(VeB)+i(VxB- ﬂE)
=p—(0)-i(0)+iJ
=J
This is the quaternion form of Maxwell’s equation (it now makes sense to use singular
tense).
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We should also be able to derive the field from the potential. First define the quaternion potential

as 4 = (gé +Z'Z) which is consistent with B = V x 4 and

Then
F=-B+iE
=-V x Z—z[vqu‘a—‘ﬂ
ot

=(g -iv)(@~id)- (4@ +VA)
=DA"-Do4

If we impose the Lorentz condition: D o 4 = Othen

Sowehave ' = DA" — Do A=DA"

We can now easily derive the field from the potential:

56

4-5-6

4-5-7

4-5-8

4-5-9



F=DA"
=(2-1v)(¢~id)
=op—i6A-iVp-VA
= ¢~ VA-i(9A+Vg)
=¢+VoAd-VxA+i(-Vg-3a)
=(8¢+Vod)-B+iE
=DoA+F
=F

4-5-10

4-6 4-Potential Gauge Transformation

The gauge transformation of the 4-potential will be most useful as it is independent of the co-

ordinate system used. The transformation is accomplished by (recall ¢ = 1).

A'=A4+VA
P +61
=%
_ - - [PA
combine this as a 4-vector: ¢’ +id'=¢ +id - [?t- - z‘VA) 4-6-2
Sod =A-DA or A =A"—D'A 463

Under a gauge transformation:

F'=DA" =D(4"~D'A)
=DA*-DD’'A
=(F+Do4)-0A
=F-TA

4-6-4



In order for this to be invariant we need LA = 0 i.e. A satisfies the wave equation:
(0” 12 -0x* -0y’ - é’zz)A = 0 which can be solved using known methods. So the 4-force is

mdeed not changed under the gauge transformation.

4-7 Lorentz Gauge

In order for the 4-potential 4 to satisfy Lorentz’s condition we require Do 4 =0 so, given some

4-potential A, we have [IA — Do 4 = 0 which is Poisson Equation; which we can solve. We
have then a Lorentz gauge. So we have DF” = J and then F = DA" which are now invariant

under “Lorentz” gauge transformations satisfying [JA = 0.

4-8 Relativistic Equation of Motion

Let us now consider the motion of a charged particle with mass m and charge q, being

influenced by an EM field. Let it have rapidity B; in a proper time interval d 7,

dt = (cosh ,B)dt = yd7 . The relativistic equation of motion of the particle is the Lorentz

d ~ .
equation of motion: -d—lmyﬁ = q(E +V x B) 4-8-1
. . d S s dt
or in proper time: g = q;/(E +7V x B) noting ¥ = e 4-8-2



Let us now convert this to a quaternion form by taking the dot product of both sides with ¥ :

Wo;?;m}fﬁ:qyz(ﬁoﬁnLﬁo(VxE))

dr
- d 1d ,
qyzvoE:m——c—[;(yz(wlov))—m—i—g;y v?
C ot D (Gnh? B) = mE- % (cosh?
=m dr(smh /)’)_mzdr(cosh ﬂ~l) 4-8-3
1d 1d ,
—msz(}/ *1) ndeTy
_, 2
- drm
_ d
qyw ok =—my
T

If we look at the particle momentum (i.e. Newton’s second law)

p=mu
dp d d
— == 2% 4-8-4
o drmy_ dTm;f(lJrzv)
a7 "



Now substitute the results of equations 4-8-1 and 4-8-3 into equation 4-8-4:

dg d my +1i d v
= _“ 2o
dr dr y dr »

:q;/(i}oE)—%—l'qy(E-{-\_fXB)

= qg{_ —;-(vE +Ev)+ i(E - —21—(173 - Ev)ﬂ

_ %’i[—- VE - Ev +i2E + ivB - Biv] 4-8-5
- % {2E} + W)(iE) + (E)Gv) + 95 - Biv]

= q% {(— B+iE)+(B+ zE)} +i(iE + B)+ (iE — E)ﬁ]

- -‘121 (- B+iE)(1+i7)+ (1 +i7)(B +iE)|

Now we know F =B +iE and u = y(1+ %) = expliPf) so

f% = %[Fy +uF"|= %[Fy —uF") 4-8-6
oras p = mu then %%:—2%1-[]7]_9+£FT] 4-8-7

which is now a quatemnion form of the equation of motion in an EM field (via Newton’s

second law).



4-9 Lorentz Transformation of the Electromagnetic Field and Lorentz’s Equation of

Motion

A2
m—
Let L represent a Lorentz transformation; e.g. for a passive boost, namely L =¢ 2. We

already have:

x— LxI'
u— Lul’
D— LD
p— LpL’

4-9-1

and we also know that m, q, dt, and d/ dr are all invariant under Lorentz transformation.

Now let us apply the L to Lorentz’s equation of motion and evaluate each component:

ap . q9 TY |77
L1 —L[zm(F£+£F)L
d T_ 4 TY T
Lol = L 1(Fp+ pFt)L o

_ 9 T Y
- [L(FE)L + pFT)L ]
_ 9 D T g T 5T
=L LFL LpLt + LpL' CF L
Then we can conclude that the Lorentz transformation of the Field is I* — LI'L* or

F' SIF'IMas L ELT is indeed the correct transformation for 4-momentum. Similarly we

find:

F*"—= LFL
F* > LFI'

4-9-3



where in the case of the pure passive boost

L= exp(~ in %} =L

p 4-9-4

U:akﬁ@:ﬁ
p| 5

Maxwell’s Equation is now given as DF™ = J . We are using a Lorentz gauge and we have the
correct Lorentz transformation for the 4-current as J — LJI" as well as for the differential field
operator as D — LDL' . We know how the field should transform so let us simply apply this to

Maxwell’s equation and see if it is consistent:

LDF'L' = LDU'L'F'I’

. - 4-9-6
= LDL'(LFL)
Which is indeed correct. Now look at the conjugate form of Maxwell’s equation:
D'F=J"
l* _} L:r l* Lx
D'F — L'D"I LFL 491

—(Lor) i = (Lor (Lrr)')

which is similarly consistent.



4-10 Example of the Lorentz Transformation of the EM Field

Given a constant EM field: —7 F = E 7 +i B, ] Find the resultant field if it is transformed by

o =1n3 in the direction 71=4(~3 j+4£).

Solution: (note that ha 2 hCZ L )

ution: ) —=—F, sinh—=—=

ClULicnl. (116ie wiat CoS 7 \/g,sn 7 ’\/5

L= e_%ﬁ = —L(Z —if1) 4-10-1
NG

_iF = H—iF)I
N 1

- -\/%-(2 —in\EF +iB.}) 5 2+in)

1 ~ ~ ~ a
=5 @~ i)2E7 +iEiA+ 2B ] - B, jh)

1 . . R . a o - o 4-10-2
= -3—(4Eci + 2E 1A+ 4B, ] - 2B jii— 21E i + E i+ 2B +iB,AjA)

= §(4Ej +2B,(A] — jA)+ 4B, ] + 2iE ({7~ #f ) + At +iB i)
23
- _71_5_(1 00 +50B,(#] — j)+ 100iB. ] + 50iE, (7t~ Af) + 25 i + 25iB Ajh)

note:

4-10-3



So that

18" =2 (1008 +S08.(7§ - JA) + 1008 ] + S0iE. (17~ Ai ) + 25E. A + 251877
1 2 o z - 7 Fad ~ ~
- 7—5,(1001201 +~80B7 +100iB,] — 20iE (4] +3£) + 25,7 +iB,(7] +24k)) 4-10-4

=o<((125E. ~80B.)7 418057 +1078. + (248, ~60E )]

A transformation in an arbitrary direction has been achieved in a straightforward way.

4-11 Energy Density and the Poynting Vector

Let us now find a quaternion form for Poynting’s theorem. We assume that the medium is
1sotropic and linear in magnetic and electrical properties. Using the conservation of energy and

momentum we have from the theorem that the time rate of change of the instantaneous average
power density is given by minus the divergence of the Poynting vector £ = (E X E) . Since our
field, F, includes both the electric and magnetic components we can assume that we need only take:
T o1 1/ 5 avs  .»
—FF" =—(~ B+iE)(B +iE)
2 2
1 o o oo
:E(~BB —iBE +iEB +i’EE)
4-12-1

:1(82 +2iE xE—l—Ez)

|38

— 1z B’|+iExB

38

We can recognize the first term as the energy density and the imaginary term as the Poynting

Vector (§ ).



4-12 The Complex Lorentz Invariant

We have the significance of FF' . Now what about FF knowing that F = —B +iE = —F* 9

Is this mvariant under the Lorentz transformation. We have

F— LFI”

, _ 4-12-1
F*— LFI

Now FF* — LFL'LF"I" = LFF" L soif FF”™ is scalar then it is indeed invariant. Recall
from chapter 3 that a quaternion Q (real or complex) is scalar iff O = Q" . So let us check

FF* under this condition:
(FF*) = " F* = FF~ 4122
Which is indeed a scalar, and therefore invariant.
S FF* — LFF*L = FF~ 4-12-3

So I'I"” is invariant under the Lorentz transformation. Call it the Lorentz invariant. Now let us

evaluate it:

FF* =(~ B+iE)B-iE)

=B*-E*+iBE+EB 4-12-4
=(B>-E*}-2iB-E

of which both terms are invariant under the Lorentz transformation A more useful

form will be

3 et

FF* =3(B*~E*) -iBoFE 4-12-5

so the real and imaginary parts here are both invariant under the Lorentz transformation.

59



5 Electromagnetic Waves in a Vacuum

5-1 Preliminary Results

First define the direction of the Electric field as 7 , the direction of the Magnetic field as /2, and
the direction of a wave’s propagation as k . These form a right handed system of mutually
perpendicular unit vectors (orthogonal triad). Now we need to explore the properties of a
projection-type 4-vector, defined as £ = 1+ ik , so that we may exploit them later. First note that

this is a singular 4-vector:

kk" = (1+ik)1-ik)
=1+ kk
=1-1
=0

5-1-1

Now a useful and interesting property of this unit 4-vector occurs when it is multiplied by a

regular unit vector:

kk = k{1 + ik)

=k +ikk
=i 5-1-2
= ——1’(1 +z‘l€)
= —ik
and similarly: ik = —kk 5-1-3

60



Also we may form the unit 4-vector from:

)k =ik~ ()

ik +1 5-1-4
k

Il

Now we can obtain an unitary property from
Hevi'y=3(1+ik+1-ik) = 22) =1 5-1-5

and interestingly the regular unit vector from

~

Ho &) =3(1+ik - 1+i)= ik 516
Now if we take the square of the 4-vector:
kk=k =t+2ik+£ok =2+2ik =2k 5.1-7
(Actually (}£)" =1k, 50 k" =2""k)
Lastly let us ook at the result of multiplying a quaternion in Euler’s form by the 4-vector:
exp(]gﬁ)ﬁ = (cos &+ k sin 9)_@
=cosGk + ng sin@
= cos&k — ik sin & 5-2-8
={cos@-isinb)k
= exp{—i0)k

which will be very useful for electromagnetic waves.

Similar results hold equally well for the conjugate of this 4-vector.
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5-2 The Wave Equation

Now we need to look for a wave equation for the field and the potential (using the Lorentz gauge).
Before constructing a wave look at the wave propagation 4-vector dotted with the x-axis vector and

how it is affected by the differential field operator:

kox=kg—koF
Dk ox)=(8 ~iVkt ~k oF)
= by~ 0~ 0+i{i8, + &, + k& fhkox+ kpy+ ky2) 52-1
=k, +ik |
=k
and similarly: D*(lg o )_C) =k 523

How does the differential field operator affect a plane wave?

Dexplik o x)= D(COS(@ o x)+isin{k o 5))

= (— sin{k o 1))(D(£g ° g)) + i(cos(ﬁ ° x)XD((Jg o _X_))

524
= z'(D(k o _;g))(cos(k ox)+isin{k o z))
=ik exp(il_i o &)
We find, m fact:
Dexp(ilglgox_)=¢i’£eXP{iéli°¥) 3.2-5

D" exp(i kko x) =+ik" exp(i kko g)



These should provide a solution to the wave equation:

0 explik o x) = DD" explik - x)
= Dlik" exp(ik - x))
= (D exp(iﬁ o J_c))(ik*)
= ik explik o x)(ik") 5.2-6
= ihik” explik - x)
-k explik o)
=0

Thus cxp(i ik o x) represents a scalar plane wave propagating with velocity ¢ = 1 in the direction

k =— . This satisfies the wave equation.

o;wjgﬁl

5-3 Plane Wave Solution of the Wave Equation

In a vacuum Maxwell’s equation reads: J = 0. Therefore DF™ = 0= D"F where 34 such

that F=DA" and Do A=0.

Thus wehave D'F = 0 — 0= DD"F =[] F where each component of F satisfies the wave
equation. AlsosinceF” = D" 4 then 0= DF™ = D(D* _4_) =[1 A sothat A also satisfies the

wave equation. This will be used as it is easier to solve for 4 and then find the field.

Referring to equation 5-2-6, a plane wave solution to the wave equation will have the form:
4= exp(i[c_ ° J_g)Q1 + ckp(— iko g)Q2 5-3-1

where (J,, U, are constant complex quaternions and £ is the direction of

propagation.
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For A to be a 4-vector we must have the requirement that 4 = 4 ! (hermitean)
v A= explik o x)0, + expl~ik o x)0, = A" = exp(~ik - x)O +explikox)0] 532

Tohold forall x: O, =0, , 0, = O] must be true.

But since we have arbitrary complex quaternions we can choose to express them in the form:
0, =¢ +iB, - z'{c2 +iE’2) where B, = B,k + B,/ + B, it and k , , and 7zare mutvally

orthogonal.

We can pair ¢, and B,, by using the properties of the unit 4-vector and equations 5-1-5 and 5-1-6:

1=k +47) ik =%k k")
So
0, =le, +iB}-1c, +iB,]
- j-;- el + &)+ 1B (k&) +i(B,] + BISI??)]
~ifse b+ k) + 1By~ &) +i(Bol + B
= [t {e, + B+ 3k (e, — Bo)+ (BT + By 533
~1’[% lc_(c.z + By, )+ %{(._'(cz - le)+ i(Bzzf + 323;1‘1)]
= :alk +a,k* +iB,l +z'BISﬁz]—i[a3 k+ak" +iB,f + z'B23ﬁz]
= /_4.1 - l::'_4.2
Then A = explik > x)3(4, —id, )+ expl— ik - x)3(4,+i4,) 534

since 4, = A and A, = A} :
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A= %(cos(k ° g) +1 sin(@ o g))ﬁl - %(i cos(fc_ ° _)g) - sin(ﬁ ° _Jg))A_z
+ %(cos(& o 5) —i sin(lgw ° z))_,g .+ Zl(i cos(_lg ° _Jg) + sin(l_c o g))éi_ ) 5-3-5
= cos(_lg ° 5)_4; + sin(& ° x)éz

and then also 4" = cos{k o x) 4! + sin(k o x) A" 5-3-6
Now we can find the field:
F=D4
= —sin(k o x) 4 D{k o x) + cos{k o x) 4, D{k - x) 5-3-7

= k(- sin(k o )4; + cos(k o))

also a solution to the wave equation. Now let us try to simplify this field by substituting

the form of the 4, and 4, into the above equation:

F = k(- sin{k o x)4; +cos{k - x)47)
= k(-sinlk o x)a, & + a,k +i(B,,] + B,
+cos(k _Jg)[a_,,if +a,k+iB,I + BBn‘z)])
= —sin(lk o x)|a, kk" + @, kk + ik(B,,] + B,gh)|
+cos(k o g)[a3 k" + a,kk +ik(B,] + 8231?1)]
= sin(g ° gg)[az kk+ i[g(Buf + BBn“z)] + cos(g ° x_,){a4 kk + i@(an + 323;1‘1)]

As kk* = k,(0). Now kk generates a non-vector term so we must set a, = a, = Qor the vector

nature of F will be violated. Thus we are left with



F = =sin(k o x)|ik(B,,] + B,gin)| + cosll o [ik(B,l + B
= z‘@(- Bl sin(k o x) - B,jsin(k o x)+ Bl cos(k o x) + B,mcos(k o z))
= i@(Bzzi cos(& ° g) — B ,m sin(k o z) + B,m cos(& ° X) - BIZZA sin(_lg ° g))
= ik([B,, cos(k o x) + Bk sin(k o X)) +[B,, cos(k o x) — B, sin(k o x)])

Hiox) | —H{kox) . phlkex) _ —H(kex) |
:ikngze e Bt 28 ]z

eFlee) | pklkex) . oklex) _ ki) \
B, - B,k 7
+{ 23 2 1 2 )
_ quzz + Bm Hkox) Bzz Bl3 ~k{kox) ]Z
- o) ~
L L i
B? _B’J ox B7 +B7 —E{kox) |~
_*_li 23 . 12 Hkex) | P23 T Py > 12 kK _)}m)
— ik((Bzz :_‘813 i+ By ;Bl?. ﬁaeé(gw_c) +(Bzz ;Bm i—l— By, 1'812 rh)e—i(@m_c))

5-3-9

where 1711 , IZZ_LE thus these vectors are in a plane perpendicular to the direction of

propagation.

There are only two cases to consider:

Case 1) 4, = —or A, =1 and 4, = 0 so, choosing the second case: 4" = —4, ke g
F = D(- id,e™=h) = —ik kA,e™5h = —k Ao =i 53-10

Case2) 4, =1 or A, =~ and A4, = 0 so, in the second case: A" = id ke Feoxy

F= D(iA e ke 57171) = —ikkAe 5 = —k A e 5-3-11
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In either case we have

F = — A e 1+ ik )i
= Ak e e (— s+ il
= —Bym + iEOf
=-B+ik

5-3-12

which is indeed correct.

5-4 Circular, Plane and Eliiptical Polarization

Now let us try to classify these electromagnetic waves under polarization. We will use standard
conventions for this with all of the confusing contradictions (but avoiding Stokes Parameters).
This section will also help to summarize the results so far that we found for the general plane wave

solution.
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Circular Polarization

The simplest case we have two “directions™ to consider (here comes confusion)

Table 5-4-1: Circular Polarization

Positive Helicity Negative Helicity
or or
Left Circular Polarization Right Circular Polarization

4 iA, exp(lgk ° g)ﬁz — iAQ exp(— iglc_ ° g)n%
F=-B+ib | Ak, exp(fkox)(-m+il Aoy expl— kk o x)(—# +il)

= Ak, exp(—ik o gc_)(— A+ il ) = AyJey explik o E)(" ri+il )
—iF=E+iB | Ak, exp(l:t_lg ° g)(i + ir?z) Ak, exp(— fko 5)(? + z'nAz)

= Ayk, exp(—iko g)(ZA + inAz) = Aok, explik o x)(i + irfa)

In either case the Magnetic and Electric components can be read off directly.

Linear polarization

In this case both negative and positive components are included in the wave so that

4

[T

[i{f + é"] = 5id, [exp(l:r_lg o _3g) — exp(— kko E)]”Af

i4, [cos(k ° g) +k sin(lc_ ° 5) - cos(lc_ ° _Jg) +k sin(@ ° g)]ﬁi
iADIE sin(@ ° _Jg)ﬁz h

Ay sin(k o x)(~i1)

1 s

5-4-1

Il
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F=i4, cos(& ° E)D(& ° g)lﬁ =id.k cos(k ° x)(i )
=4, cos(k ° _J_C_)ko (1 + z'fg)lA = Ak, cos(lc_ ° x)z‘(lA + iﬁz) 5-4-2
= Agk, cos{k o 5)(— il )

—iF =kF = z}’E@AO cos(_k_ ° g)i = A, cos(@ ° z)[cj

= Ao COS(_]Q o X)([A + l;ﬁ) 5-4-3

Elliptical Polarization

The most complicated polarization occurs when the positive and negative parts of the plane wave

no longer have the same amplitude:

[A exp kk ° x — A4, exp( kk o x)} i cas
= [ A - A, cos(k ox)+k(A + 4 )sm(k ox)]m
F= —ilgk[Al exp(lg_lg o g) + 4, exp(— ]glf_ o J_c)]ﬁz
= —iZg[Al exp(l\:._lg ° g) + 4, exp(— ]cAr_lg o 3(_)]](’:};1
= i[AI exp(lg_lg o x) + 4, exp(— IE@ o ;)][cj 5-4-5
= i}'cO[A1 exp(l:r_lg ° _Jg) + 4, exp(— lgk ° gc_)](f + 1ﬁ1)
= k| (4 + 4,)sin(k o x) + (4, — 4, ) sin(k o 0)|(~ 7+ if)

—iF = I{O[A1 exp(lgk o _Jg) + A4, exp(— lgﬁ ° gc_)](i + iﬁz)
= ko[(4, + 4,)cos{l o x) + (4, ~ 4,V sin(k o x)|(7 + i)

Here the magnetic and electric fields are rotating in the I - plane, with angular frequency

@ = k, and an average amplitude between A4, + 4, and A, — A,. Thus the field vectors trace

ellipses with semi-axes 4, + 4, and 4, — 4, .
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This 1s actually the most general case as there are six possibilities for the amplitude representing

various polarizations:
1) 4, = 0or A, = 0 Negative or Positive Helicity
2) A, = A, or A = —A, Linear Polarization

3) 4,> 4, or A, < A, Positive or Negative Elliptical Rotation (right handed system)

5-5 Energy Density and the Poynting Vector

As in chapter 4 we can find a form for Poynting theorem. Again take +FF" .

For a linear polarized wave we find

1

2 FF' = %(Aok0 cos(k ° z)(— i+ il ))(Aoko cos(lg ° g)(n?z +il ))

——

2
Aoi%) cos”(k o X)((mz + 1% — il + iin”z)) 5-5-1

0) cos?(k g)((z) + 21’13)

b

Vaniiinen

4,

il

2
(A0k0)2 cos*(k o g)(l + ilg)

and the direction that the energy is directed is in the direction of propagation (Poynting’s

vector).
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For a circular polarization (positive helicity) we find

%FF T = %(Aoko exp([c_ ° g)(— +il ))(Aoko exp(k ° g)(ﬁz +il ))
2
= (Aofo) exp 2(@ o gc_)((mz + 17 — il +il, ﬁz)) ssa
2
(AOkO) exp 2(_lg o gc_)(Z + 21'1?)

2
= (A0k0)2 exp 2(_lg ° g)(l + zlg)

Again the term that we interpret as Poynting’s vector is in the direction of propagation. We
expect that the energy should be directed in the direction that the wave is propagating so that the

wave is indeed transmitting power.
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6 Electromagnetism: Macroscopic theory
8-1 Maxwell's Equations

Recall in chapter 4 the microscopic form of Maxwell’s equations in Heaviside-Lorentz units,

with ¢c=1:
VoE=p
VoeB=0
. SE .
VxB——= 6-1-1
X o J
_ OB
VXE—}-—g;—O
orifc=1;
VoeE=p
VoB=0
. 10E 1.
VxB-—"—"==7J 6-1-2
c ot ¢
. 10B
E4——=0
VX +c ot
Which with the field defined as
F =-B+iE =i(E +iB) 6-1-3

and ¢ =1 lead to a quaternion form for Maxwell’s equations as
DF*=JoD'F=J 6-1-4

Now we need to find an equivalent form for the macroscopic theory, with ¢ # 1.
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6-2 Modified Maxwell’'s Equations

Normally we make notation simpler by defining macroscopic field variables as (in Heaviside

Lorentz units):
N 6-2-1
where the new components are the polarization and magnetization. A linear, isotropic,

homogeneous medium is assumed. These lead to the macroscopic form of Maxwell’s equations, in

Heaviside-Lorentz units, in the form:

VeD=p
VoB=0
. 18D 1.
VxH—-——=—J 6-2-2
c ot ¢
. 18B
VxE+———=0
c Ot

VoD=p
VoB=0
. D .
VxH-——"=J 6-2-3
ot
. OB
VXE—&-E——O

However these forms are very dependent on the system of units used and we will need to change
our definition of the quaternion field, F. Thus a change of the above forms is required in such a
way that we can salvage the previous notation and results form the microscopic theory developed in

chapter 4. So we modify these equations making some definitions:
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From now on, let the speed of light in a vacuum be ¢,.

1

J7aS

Let: A= and G = AB 6-2-4

In Heaviside-Lorentz units, let ¢ = Ac,

In STunits,let c= A4

Under these definitions, and assuming from now on that € and £ are constant, the equations of 6-2-

2 and 6-2-3 are changed in the following manner, for Heaviside-Lorentz units:

_ 128 - 1 G 190G
* c, 0 * Ac, Ot c Jt
Lyvwg-12P2
o ¢, Ot
- 6-2-5
1 ~ €
:—VxB———@
y7; c, Ot
Ly LB gg L9E_ 1,
/”L,ut Ac, Ot c Jdt ec

So that we now have for Maxwell’s equations in matter these modified results, in both the

Heaviside Lorentz System and in the SI System:

I |
VeE=—p
€
VoG =0
VXG__l_é_:__l_j 6-2-6
¢t ec¢
. 14&
VxE+——=0
8 c Ot

Finally, define 7 = cf (where this 7 is not to be confused with the proper time in Chapter 3).
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These redefinitions let us preserve the quaternion notation developed in chapter 4. We also have

the added bonus that the above forms are preserved in the rationalized MKS system with the

appropriate constant definitions as above.

8-3 Quaternion Form

Now we can follow the same form developed in chapter 4 and define; in either the Heaviside-

Lorentz or the Rationalized MKS system of units:

F=-G+iE =-AB+iE

1 1~
d=— p+—iJ)

€ c

1 :
D=—4-iV=2 -iV

c

Then Maxwell’s equation in matter read (scriptic lettering)
DFf=d o DF=J4
The potential, following the same development in chapter 4, follows from:

VoG=0=3&3VxA&=(

_ ¢ . Ak ~ &
O:VxE+~t§;q:Vx(E+T]:>3(D3E:—V(I)—(z
cT N T T

Now define & = ® +ik .
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Then:

DA" =(4 —iV)(®-i&)

. &) .
:—Vxﬁw(-m)—ggﬁ(@@woﬁ) 534
=-G+ilb+Do &
=F+DoA

But by the same argument as before, we can impose the Lorentz condition D o & = 0. So we have

indeed the same form as before, namely:

DA"=F 6-3-5

Now we have a form of Maxwell’s equation that will work for all linear isotropic homogeneous

media with constant electromagnetic properties, and with time varying fields.
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7 Plane E-M Waves in a Linear, Isotropic, Homogeneous
Medium
\/
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In this cage hoth npcmﬁv and gqmve components are mcluded in the wave so that
4 r r+ r— —} ~ N
A = %’ A4 +4 |= Sid [exp(kk ° x) exp(- kko x)]m

o [cos( kox)+ k sin(k o x) - cos(k o x) + k sin(k o x)]

Ak 1n(k o x)m

= 4, 1n(ko_3g)( zl)

F=D4 =id, cos(k ox)D(k o x)]
= idy ke cos(k - x)(7)
= Agk, cos(k o _X‘_)l(i + nf?z)
= Ak, cos(k o _Jg)(— i+ il )

7-2-2

—iF = iF =E+iG
= z‘iglc_Ao cos(k o E)ZA
= A, cos{& o _Jg)ic_lA
= Ak, cos(k o _Jg)(i +z’r?1)

7-2-3

Elliptical Polarizatio

[4 exp kk o wc -4, exp(— kko _g)]ﬁz
= z[(A.l Az) cos(k o x) + I:T(Al + A, ) sin(k o g)]ﬁz

F = —ikk| 4, explkk o x) + 4, exp(~ kk o x)|
= —ik] 4, exp(kk o x) + 4, exp(~ kk o x) |
— z?[AI explkk o x) + 4, exp{— kk o ,_x)]@Z 7.2-5
= ik,| 4, exp(kk o x) + 4, exp(~ kk o x)|(7 + i)
= k;|(4, + 4,) sin(k o x) + (4, — 4, )k sin(k o x)|(~ o+ )
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—iF = kO[AI exp( ik o ._x) + 4, exp(~ kko g)](f + iﬁ?)

= ko|(4, + 4, ) coslk o x) + (4, — 4, ) sin(k - _:g)](f + ifh)

Here the magnetic and electric fieids are rotating in the/ — /# plane, with angular frequency,

~

®
— =k, and an average amplitude between A4, + 4, and 4, — 4, . Now we see the true power of
c

he auatearnion notation
uic g 00 1




8 Transmission Lines
o the Wave Transmission Problem with

AT f\"PD QV‘I?A]]’C oMY ;(\ﬂ ‘F‘{'\f “‘]’\ﬂ hnmr\]nv 'F"ID]A
AASIREE A LYACLATVYWIL D QUIVEL BV WV VALK IVA ivia

|

'L Wikl Vy {5
V, =10, +j(?}, suchthat V=£kJ +V, 8-1-1
and A, =4, +3d, §-1-2

g= c:c)s(a)t—,li'z)g1 +sin(a)z‘-—ﬂz)§2 8-1-3

suchthat g, = g, (x_,y) , which represents an electromagnetic wave propagating in the

k direction. Now substitute this assumed form of the solution into Maxwell’s equation:

D'g= (ﬁf + z‘V)(cos((u t— [)’z)g1 + sin(co -4 z)g‘rz)
=~ sin(cu t-p z)[(ca —if I:r)g1 —iv, gz} 8-1-4

+ C-OS(C'J t- ,BZ)[((’) - Zﬂ];\)gz +iv2gl}

for a solution to exist: [(a) —ip l?)gl - Z'V2§2] =0 8-1-5
and [(a) —iff é)gz + ingl] = 0 must be true. R-1-6



One possibility is V, 8, = 0 andV, g, = 0 which implies:
D (V,xg)=0—g=-Y,9, 8-1-7
2) (V,08)=0——>A,4,=0 8-1-8
3) ((u t—if /E)gZ =0 8-1-9

implies that both quatemions are either singular or equal to zero. Thus for a non-trivial solution
both must be singnlar. g is fine as it is arbitrary by definition and thus can be defined to be
1

singular. (0) t—ip i;) must be made singnlar. Thus: (0) t—if k-) =k, (1 —i ]::) to be singular so

w=p=k,.

These three requirements will let us define a form for g, = (1 +1i ig)Q, where (J, is a general

quaternion, say: (J, = [(a +1b) + (01]‘:' + iczf;.) + (2 +ZB)] 8-1-10
where A,B 1k

Now (a + ib) would generate scalar terms which do not make sense for a vectorial solution.

Also (cllg + iczlg) generates scalar terms since Je* = —1. Thus we are left with 0= (2 + iB)

82



un
C

(1+il€)(Z+z‘B‘):(*—l§xB)+i(l€><Z+B)
= (A~ kB)+ k(A iB)
(

N o A 8-1-11
= (1+ik)(4 - %B)
—~ (1 + ik)EG
Thus g, = E, a complex vector
We have solution for Maxwell’s equation in a vacuum as
2 = ((cosky(t - 2)) B, +(sinky(t - 2))Ey, )(1+ 1K) 8-1-12
We can choose the origin such that the term (sin k,(t - z))EOZ (1 + z'k) is absent. Then
g= (cos k(1 - z))(l + ik)EO
. - . 8-1-13
= (cc)sk0 = z))EO(l —1i
where £, 1k ,V, xE, =0,and V,0E, =0
Then £, = -V,¢ and A,¢ =0 where ¢ is constant on the conducting boundaries defining the
transmission line.
So E = (cosko(t ——2))E0 and B = kE
where BLE ; !B [ = !E l which we expect for a wave solution.
We should also be able to derive this solution from the 4-potetnial. Recall
F=DA4A" < g=-iDA" 8-1-14
where 4 = (cos k(1 - z))¢(1 + z'k)



DA" = (8~ 1)|(cosky(r - 2))g{1 - ik
=16, ~iks, ~iv, (cosk, (1 - 2))p(1 - i)
= —k,(sin fey (¢ — )@l (1+ k)1~ k)]~ cos ky (¢ — D))V, )1 - i)
=0- i(cos kot — z))(— Ea)(l - zlg)
i{cosky (¢ — INE, )1~ ik) 8-1-15
= i{cosk,(t - z)Xl + i]?)EG
=i{cosk,(t — ) E, +ikE, )

= (cosk, (7 - z))(z’EG -B,)
=F

As required!



ormal Mapping as a Method of Solving Boundary Value Problems
Since £ is analyiic and VE # 0 we should be able to apply complex conformal mapping as a
methaod of solving the boundary value problem for transmission lines. Refer to figure 8-2-1
representing a cross-section of a very long transmission line and #t’s mapping to the W-plane. Note
the branch cut on the negative x-axis
Z Plane
y
A O Vv
z R S STV, W Plane
S \\\\\\\\ \\\\\\\\\\ N // o
AN IO TN T N O
A a AL\ NANRRARRNN
ARY et NNNRNRNNNN
A AR A AN Y Yy
ESNEERNN SEERINN X 0 NN\ N Y
Rl NN AN AR Y
AN\ ALY AN O Y
ANN\N A BV N NN NN NN
ALY i -
ENNRNAN g K 2
\_ 4=0
Figure 8-2-1: Cross-section of the Transmission Line and its Mapping
We have Eo =-V,pand A,¢ =0. Thus¢ is harmonic in the x-y plane, and therefore forms
the real nart of the analvtic finction
the real part of the analytic fimction
Q=¢+i¥ whereonu; ¢=V 8-2-1
w 4=0 8-2-2
Vi ¥
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8-3 Transmission Line with Concentric Circular Cross-Section (using Conformal
Mapping)

Here we take a coaxual line with a concentric circular cross-section with a vacuum in the annulus.

This provides the simplest case for this application. Refer to figure 8-3-1

wi

~xl

Figure 8-3-1
The mapping that will accomplish this is
Z=expw w=u+iv=1logz
= exp(u +iv) or =lnr +i8 8-3-1
:(expu)(cosv+z'sinv) —r<0<rm

so x = exp(u) cosv and y = exp(u) sinv also u = In7 . Note the branch cut on the negative x-

axis. The complex potential isthen Q= ¢ +i/'¥V = Aw + B = Alu+iv)+ B 8-3-2
On the boundaries: ul ¢ =V, —— Au, + B=V 8-3-3
w2 ¢p=0—>A4Au,+B=0 8-3-4
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Then this implies:

4
A=
(”1 ”2)
Vo 8-3-5
B=-Au, = -2
(”1 - ”2)
So then
Q= d (u+iv)- Vott
(ul - ”2) (ul - uz)
= '——————-———"I/O (u —U, + ZV) | 8-3-6
(”1 - ”2)
Vs
= w—u
)
In’
Volu—u V,(lnr —Inb b
So the field potential is ¢ = Re(Q2) = O(u uz) = o(inr - Inb) =V, b 8-3-7
u, —u Ina—Inb a
1 nZ
mﬂ—mg
So the potential difference between the conductors is ¢ =V ——Z—ZT =V, 8-3-8

In—

b

Which is expected for a coaxial cable.

Now the current in the central conductor can be found by taking a simple path, S, from one edge
of the branch cut anti-clockwise to the other side of the branch cut (i.e. point A to B). This is
necessary as a closed path would cut the branch cut and give us zero current. We can then use the

definition of current namely
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I=]7okds

= ISJ odS since BLk 8-3-9
. JE ~
- L(n ar)odS

where S is a plane surface perpendicular to k.

Now if we use Maxwell’s third equation and Stokes theorem we can evaluate this result

L OE)
J:L(n ét}odS

= [(Vx B)odS

=§Bodr
C
=—§V¥odr 8-3-10
C
B

:__[dqf

A
= ‘(KIJB - \PA)
=-0¥

Now it is clear why the branch cut is really necessary. If we use a closed path in a region

in which Q is analytic we would have [ = -(‘P - ¥ A) = 0 which does not make sense physically.

We need to evaluate:

pf
Ly 8-3-11

U —u,

¥ = Im(Q) =
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14 \
é‘P:TB-TA:u ju (VB v,)
1 2
Vo
_u]—u,(ﬂ (- 7))
_ 2al,
A
27V, 27V,

So the current is /, = -6¥ =

In full space and time the wave is as follows:

F= i(cos k(7 - Z)Xl + ilE)Eo
= z'(cos k,(t— z)Xl + ilg)(— V2¢)

= i(cos k(t - Z)Xl + ﬂg)(rﬁ 5 F)

where 7 is the unit radial vector perpendicular tok .

27V,
In2

a

Also I = (cos k(2 - z)) , varying in time.

o v, Int

u, — i, “Inb-Ina In%

. : "
The impedance is 20_70__—5‘1‘_ ARy

b
11’1;

8-3-12

8-3-13

8-3-14

8-3-15

8-3-16

It is now clear that the method of conformal mapping is the superior way of solving this type of

boundary value problem using quaternionic forms.
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8-4 Transmission Line with a Confocal Ellipsoidal Cross-Section

In this case the cross-section of the coaxial line is assumed to be concentric ellipsoids. Again we
need a mapping to the w-plane from the z-plane. Refer to Figure 8-4-1. C, represents the foci of
the ellipses.

One such mapping that will work is

W Plane

NN

Ay 1

ni

NN
Y

~xi

Figure 8-4-1: Cross-section of a Transmission Line assumed to be Ellipsoidal

z=C, coshw = C, cosh(u +#v)
= C,[coshu cosh(iv) + sinhu sinh(v)]

= C,[coshucosv +isinhusin v]

:[x +z‘y]

8-4-1
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If we take a constant u = u, then

X = @, cosy a, = C, coshu
. where . 8-4-2
y=bsinv b, = C, sinhu
2 2
so —5 +i5 =1 indeed an ellipse 8-4-3
a” b
and a,” — b’ = C? (cosh2 u — sinh® u) =C; 8-4-4

so C, is indeed the focus of the eilipses.
If we look at a constant v = v; then

X =a, cosu
. which form hyperbolae 8-4-5
y=b,sinu

Thus constant u forms ellipses and constant v form hyperbolae that intersect at right angles
to the ellipses.

We can now find our complex potential Q= ¢ +7¥ = Aw + B = A(u+iv) + B 8-4-6
Hereonu=u2, ¢=0 Au,+B=0 8-4-7
u=ul, ¢=V, Ay, +B=V, 8-4-8
So that we find:

T

(”1 - ”2)
8-4-9

Vot

B =—Au, i —
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v
Sothen Q= —Q——-—(w - uz) 8-4-10
(”1 - ”2)
which is the same solution obtained for the case of the concentric circles.
(g -w), (u, —u,) (, ~u,)
u+iv)=~—=¢+iV)+u, =l u, — —f ¥ 8-4-11
Now referring to equation 8-4-1:
x = C, coshucosv y = C, sinhusinv
Out ou and ou ou 8-4-12
= (C, cosh| u, — — )cos(——— ‘Pj =-C sinh( - J sin(— ‘Pj
0 ( 2 VO ¢ V;) 0 uZ V;) ¢ pvo

This gives x and y in terms of the potentials ¢ and V' .

Now the current in the central conductor can be found in the same way as in section §-3. As
before:

I =-6¥ 8-4-13
Once again:
b
po—0 8-4-14
U —u,
V. 27V,
¥ =—L—(y, —v,)= 2 8-4-15
u —u, u, —u,
27V,
So the current is [, = 0¥ = . 8-4-16
uZ ul
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In space and time the field is:
F = i{cosky(t — 2))1+ik)(~ V,9) 8-4-17

OF
¢2 8-4-18

Wz
T

whereF:xiA%—y]A'.

where V,¢ =

[see Diamant, p 201]

WW__6 wm-u 8-4-19
Q

The impedance is Z, =
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8-5 Transmission Line with a Concentric Circular Cross-Section and a Dielectric-Filled
Annuijus

We need to first find a solution to the wave transmission problem using the modified Maxwell

equation. Recall equation 6-3-2:
DF' =4 or D'F=d" (see sections 6-2 and 6-3) 8-5-1

Assume, in keeping with the previous results, a form for ¥ in the annulus as follows

F = i(cosk,(z - z))(l + ilg)Eo 8-5-2
where E, = ~V,¢ as before. 8-5-3
Then exactly as before DF™ = 0. 8-5-4

Now we use this modified result to solve for the circular cross-section with a dielectric in the

annulus exactly as before. The problem is represented in Figure 8-5-1.

N N
\\\

ni

_\5\\\

u =lha u = Inb
1

-zl

Figure 8-5-1: The Dielectric Filled Transmission Line
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Thus we have

z=(expu)(cosv +isinv) or w=Inr+i@ -z<@<r 8-5-5
Q=¢+i¥=4Aw+B=Au+iv)+B 8-5-6
On the boundaries: u=ul, ¢ =V 8-5-7
u=u2, =0 8-5-8
So
pf
u —u
P 8-5-9
B ot
(1, ~1,)
: Vs :
Again we have Q= ————(u —u, + zv) 8-5-10
(”1 - ”2)

In order to find the current in the central conductor, first note that Maxwell’s third equation (M3)

~ ~ I -
nowreads VxG-gFE = e J . Also let us define the local impedance as

1
n= \/g =Au= Te Now take a simple path, S, from one edge of the branch cut anti-

clockwise to the other side of the branch cut.
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Then

I=[JedS
. GE) .
= L(J +ec j odS
ot
= CL(V X G) odf
=€ c§; G odr
(o4
=-c cﬁg V¥ odrF
C
=—ecco¥
G . . : 1. .
where € ¢ =— in Heaviside-Lorentz units and € ¢ = — in SI units.
n
27V, 27V,
The current is /, = — ecd¥ =ec———=ec 7"
u, —u, Iny
. . 1 Ing
The impedance is Z, = —
: ec 2n
So that in Heaviside-Lorentz units Z, = 1 In% andin SI Z, = iln%
7c, 27

The field in space time is :

F= z'(cosko(r - z))(l + ilg)(— V2¢)
= i(COS ky(r — z))(l + ié)(rﬁ% ;’2)

where 7 is the unit radial vector perpendicular to % .

27V, L
Also I = 1;[; (cos k, (’l‘ - z)) , varying in time.

a
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8-6 Transmission Line with Concentric Eliipsoidal Cross-Section and Dielectric-Filled
Annulus

The solution in section 8-5, namely F = i(cos ko(z— z))(l + if’g)Eo, with £, = -V,¢ , remains

valid in this case, where now ¢ is the solution for the ellipsoidal case as in section 3-4.

Thus z = C,[coshucosv +isinhusinv] = [x + iy] 8-6-1

\W Plane

i

~qi
U

Figure 8-6-1: Dielectric Filled Ellipsoidal Transmission Line
Q=¢+i¥=Aw+B=Alu+iv)+B 8-6-2
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As before we have this solution:

A= Vy
(”1 - ”2)
8-6-3
B=-— Vot
(”1 ”7)
p,70
Sothen Q= ~———(w - uz) 8-6-4
(”1 - ”2)
. (ul _uz) . (uz —ul) -(uz —ul)
+ = + \P + - - - \P 8-6-5
(u+iv) VO(gél)uz(uz——--——yo¢51V0
Now referring to equation 8-4-1:
x = C, coshucosv y=C,sinhusinv
ou ou and ou | . [du 8-6-6
=C, cosh(u2 - I—/o— J cos(—l}o— ‘P) =-C, s.inh(u2 — 70;15) sm[z ‘I’J
This gives x and y in terms of the potentials ¢gand ¥ .
Once again:
v
po—Lo 8-6-7
U~
27V,
op = =20 8-6-8
U, —u,

Now the current in the central conductor can be found in the same way as in section 8-3. As
before:
I, =—eco¥ 8-6-9

¢
where € ¢ = — in Heaviside-Lorentz units 8-6-10
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i
and €c¢ = — in S uniis.

The current is [, = — ecd¥ =ec¢ u?iV; =ec 27;/0
In space and time the field is:
F = i{cosk,(z — 2))(1+ik)(~ V,9)
- oF

where V,¢ =

2

_/9¢
Vo

where F = xi +)j .

[see Diamant, p 201]

r

27V
The time varying current is / =€ ¢ guo (cos k(7 - z))

The impedance is given as follows:

. . : nou
in Heaviside-Lorentz units Z, =
27,
Ot
and in SI Z, = 2%
27

This chapter illustrates the practical use of quaternions in the field of electromagnetism.
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