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ABSTRACT. The objective of this paper is to examine the Radon transform, its prop-
erties, and wavelet analysis applied to numerical analysis of the inverse Radon trans-
form. With applications in computer science in mind.

THE RADON TRANSFORM 1.1

The Radon Transform was developed in 1917 by Johann Radon in his paper
"Uber die Bestimmung von Funktionen durch ihre Integralwerte langs gewisser Man-
nigfaltigkeiten"(translated as "On the Determination of Functions from their Inte-
grals along certain Manifolds").

For the purposes of the definitions that follow all functions will be of the class
D of C" (Rn). Which is the class of functions that have compact support in R'
and are infinitely differentiable.

The Radon Transform in R 2 is defined as follows see Figure 1.1.

AP, 0) = 	 = I f(x, Y) ds
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Now if the line L is given in normal form see Figure 1.2.
t

FIGURE 1.2

p= x cos + y sin

= (cos 0, sin 0)
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and

= (- sin 0, cos 0)

thus any point (x, y) on the line L can be represented as

(x,y)=x=pe+t e -L
	

(1-2)

Also the equation for the line L can be written as

p = e • x
	

(1-3)

So eqn. 1-1 becomes

co

f =	 = I f(k+W- )dt 	 (1-4)

using eqn. 1-2.
Also by using eqn. 1-3 in eqn. 1-1 , the Radon transform can be written as

= (p, e) = f f f (x) 6 (p - e • x) dx dy

= f (p, = f f (x) 6 (p - e • x) dx	 (1-5)

where 6 is the Dirac delta functional.'

1 The Dirac Delta functional has the following properities:

i E	 co

f (s) 5(x) (IT = f (0) , 	 f f (s) (r) dx = f f (x) 5(x) dx 0 , V € > 0
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THE RADON TRANSFORM EXTENSIONS 1.2

In higher dimensions the extensions should be quite obvious from eqn. 1-3.
Namely if we extend eqn. 1-3 to

p 	 x 	 ixi 	 (1-6)
=1

Which defines a hyperplane in IV and if is written in generalized spherical co-
ordinates as follows

x i 	r cos B i

x 2 = r sin 0 1 cos 02

X3 = r sin 0 1 sin 02 cos 03

xn_2 = r sin 0 1 sin 82 ... sin 0,3 COS On —2

Xn —1 = r sin 0 1 sin 82 ... sin 0,_ 2 cos Cb

Xn = r sin 0 1 sin 02 ... sin On _ 3 sin 0
	

(1-7a)
r > 0 , 	 0 < 0i < 7r, 	 0 < 	 < 27r

with Volume element:

dx = -1 (sin 0 1 ) 72-2 (sin 02 ) n-3 	sin 0,2 _2) dr de l 	den _ 2 dcb
(1-7b)

and with Surface element:

dw = rn -1 (sin 01) n-2 (sin 02 ) n-3 . (sin On _9) de l 	den _ 2 c/0 	 (1-7c)

Thus eqn. 1-5 still is valid with the exception that the integration is now over Iikn

= 	 , e) = f f (x) 6 (p - e • x) dx 	 (1-8)

The extension of the Radon Transform definition to Manifolds is obvious by inte-
grating over submanifolds as opposed to lines and planes.

f (p , e) = f 	 f (x) IV 	 (x, 	 ds 	 (1-9a)

where

_Lim e 	 { x E C2 : u(x, e) = p } 	 (1-9b)

Now Hp , £ can be identified with a Hyperplane or Submanifold and Q as the Manifold.
Also u(x, = p can be identifed with x • = p which is eqn. 1-6.
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THE RADON TRANSFORM PROPERTIES 1.3

(1) Homogeneous of degree —1 and symmetric.

Asp, sfl = f f(x) (sp —	 x) dx

= isi 	 .f(x) 6 (13 — 	 x) dx

AsP, se) = ish f (P,e)
	

(1-10)

with s —1 we have symmetry

I (-19, 	 = (P,	 (1-11)

(2) Linearity.
(1-12)

(3) Transform of a Linear Transformation.

let A be a non—singular matrix

f(Ax) } = I f (Ax) 6 (p — x) dx

A-1Y) dy
IdetlAI 	 f 61) 6 (1) e •
f(p , (A-1) T

Idet

(4) Shift Property.

R{f (x - a)} = f — a, 0
Transform of Derivatives.

R{ 
a

f = k -a-p- AP,0
Derivatives of the Transform.

(1-13)

(1-14)

(1-15)

( 7 )

7a
\aek f

Transform of a Convolution.

a
p R{xx f(x)} (1-16)

f(x) =g*h=h*g=1 g (y) h(x — y) dy = I h(y) g(x — y) dy

then

= 	 = * h 	 (1-17)

This last property is a major difference between the Radon Transform versus its
counterpart the Fourier Transform.
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RADON TRANSFORM INVERSION 1.4

•Odd Dimension.
Starting with the following integral

f f (y)I • (y — x)I dY = f dy f (Y) f dP IPI (13 e • (3' x))

= f c'° dp 1pl I dz f( + z) 6(p - • z)

where y = x z.

= I 00
dPIPI f(P e • x , e)

Thus by integrating eqn. 1-18. over lel = 1
00

	

ck I dY f(Y)Ie • (Y - x)I = 	 dPIPI f(P + e • x,e)
fl1=1 	 j 	

ck
a.r-A. 	 00

Now, Hilbert and Courant have shown that for n odd n > 3.

	

4(21r) n-1 (-1)'2 	  f(x) = ALP f 	 de dY f (Y) • (y — x)I
iel=i

Where A x is the Laplacian operator. Thus

	

4(27r)n-1 (-1) '21 f(x) = ,A: 2 	dq— dp 	 + e • x, e)
-00

Now, by evaluating

Axdp f(p+ • x,.) = Ax f (t - x)1(t,0 dt
-00 X.

	- 	 (t - e x)/(t,e)dt
-00

where p = t - • x. So by applying Leibnitz rule gives

=

but e • e = 1 (since this will be integrated over lel = 1). Thus eqn. 1-21 becomes

	

4(27r)n -1 (-1) 	 f(x) = 2.A. 2 f 	 ,f(e • x,
n-1

11=1,

2 (27rz)n -1 L 1=1
	f (x) =  	 de( )n1 f(e .x,e) 

(1-23)

(1-18)

(1-19)

(1-20)

(1-21)

(1-22)
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• Even Dimension.
Starting with the following integral

f f(y) log • (y - x)I dy = dy f(y) I dp log Ipi 5(p - e • (y - x))

= I dp log H hp + • x,0 	 (1-24)
ro

Thus by integrating eqn. 1-24 over ICI = 1.

4 1=1 de I dy Ay) log I • (y - x)I
Ie1=1 	

f 	 log IA Apd- 	 0x, 	 (1-25)
ro

Now, Hilbert and Courant have shown that for n even n > 2.

(27r)n(-1) '2	 2 f(x) = 	 I	 de dy f(y) log • (y - x)I 	 (1-26)
Ie1=1

Where Ax is the Laplacian operator. Thus

(27r)n(-1)' 72 f(x) = 0X I	 del° dp log IA (p e • x, e)
- 00 (1-27)

Now, by evaluating the Laplacian operator first,

	

A, I CO 	 CO

	dp log AP + e • x, e) = f dPiei 2 logIP1[ -: 	 e)

	

oo 	 00

	by making the change of variables p=t-e•x , and noting that 	 = 1 since this
will be integrated over ICI = 1 , and integrating by parts we have

= f log It - • xifit (t,0 dt

=_ 	 dp  jp(P , e) 
J -00 	 P - e • x

This all leads to the following inversion result

f(x) 	1
	J-

f 	
[Co 

dp  fp(P , e) 
(2r7r)n 	 Jle1=1 	 00 	 P - e • x

where by applying A. and integrating by parts twice and using 11 = 1 gives

1(p)n-ipp,e)dq dp  P
(2z7r)n fiel.1 	 _00 	 P - •

1)=P-Fe • x

(1-28)

(1-29)

f(x) (1-30)
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THE ADJOINT OF THE RADON TRANSFORM 1.5

From the definition of an adjoint we must have

(f, R*	 = ( 3 f, g) mx8 „_ i

Now by starting with the right side (Rf,g) 1 ,, s ,,--1

co

	

(Rf,g) 1 , 8„_, =
If1=1 	 -

ck f 	 dp f(p, )9(p,

	I dp I dxf (x) 6(p — • x) 9(p,

▪ 

L ck1=1 	 _co
= I dx f (x) 	

-
I 	 ck 

▪ 

dp g (p,)b(p — • x)
le1=1 	 00

I dx f(x) I 	 ckg( x,
11=1-

= (f, 	 9)1.

Thus we have an explicit definition of the adjoint from eqn 1-31.

R* (g(p, 	 = I 	 ck 	 • x, 	 (1-32)
le1= 1

Now from the previous inversion results, these results can be rewritten in the fol-
lowing operator notation.

f = R* AR f

where the operator A is defined as follows

p=t

Ag(t)
(2710 1-n ( -500n-1 g(p)

.2--i (27rz) 1-12 	((-0aT)n-1 g (p))]
p=t

for n odd

for n even

where 7-/ is the Hilbert transform defined as

1 f 	 g(p) 71 g(t) = —7r 	 dp 
p — t

Now using operator notation we have the definitions for both R inverse and R*
inverse, given by:

R* AR = I
	

(1-35)

ARR* =
	

(1-36)

(1-31)

(1-33)

(1-34)
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FOURIER INVERSION METHODS 1.6

The Fourier transform and its inverse are defined as follows

The Fourier transform:

and its inverse:

Now

= 7(k) = f f (x)e -27" k.x dx

.T -1 / = f(x)= f f(k)e 27""dk

(1-37)

(1-38)

7(k) = f f(x)e -27" k x dx

= I dt f dxf (x) e -27ri t 6(t - k x)

by letting k = 	 , and t = sp

f(so = 1.51	 dp I dxf(x)e -27"P (sp - 	 x)

= f dp e -27r"P f dxf (x) (5(p - • x)

dP e -27"P f(/), 	 (1-39)

Thus, from eqn. 1-39 we have a relationship between the Fourier transform and the
Radon transform.

Aso = T(Ap,o)
	

(1-40)

(note this is a one dimensional Fourier transform in the p variable.)

f	 Fi; 1.
	

(1-41)
This last inversion formulae in eqn. 1-41 is known as the Fourier central slice
theorem which can be depicted by the following commuttator diagram.

f(x , y) 	 ' f (p, 0)

F,

(1c,ky)  	 1(k, cb)
where

Akr ky) =
k = (lc x2 , 	 \

AT)
= tan -1 (ky /1c)

Thus the one dimentional Fourier transform of the Radon transform in the radial
variable p is the n dimentional Fourier transform of the original function.
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BACKPROJECTION(ADJOINT), FOURIER ANALYSIS AND INVERSION 1.7

The adjoint operator R* is sometimes refered to as the backprojection operator.
The explicit use of the adjoint operation leads to an alternative methods of inversion
which utilizes the previous Fourier analysis in the inversion process.

27r

f(P, 0) =	 f 	 0• x, do
0

27rI
= 	 AX cos 0 y sin (75, (b) dO

Now by using eqn. 1-41,

f = .F1 1 f

R*f =	 T2 f
=arFIT-1 Ak,0)

where once again

k = (k

= tan -1 (ky /kx)

co
FT 1 f (k, cb) = 	 f dk 	 , cb) e 21nkP

—co
27r 	 co

= 	 dO I dk 1(k 0) e 27rzkr cos(0-0)

0
27r 	 100

= f d0	 f(k, 0) e 27rticr cos09— kdk

= 	 (k-1

From eqn. 1-35 we have

f = R*Af

=

= 4+ r-Fil1.F1 at { t * f (t, 0)}
= 4 17; 2 R*FIT-1 {(27rtk) Ti (1)	 Cb)}

= 4 z R*.T1 1 {(27rzk) (-7rz sgn(k)) f (t, 0)}
r •

= 	 F11 ilki f (t (k)

Which gives us yet another inversion method. Also by combining these two results
from eqn. 1-43 and 1-44 gives

f =	 { IklY2 r
	

(1-45)

(1-42)

(1-43)

(1-44)
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Both eqns. 1-44 and 1-45 can be depicted again as commutator diagrams just as
was the Fourier central slice theorem (eqn. 1-41). The commutator diagram for
the filtered backprojection technique which depicts eqn 1-44 is

* Ti ' {1k 1 kt, 0) }

f (p, 0)

j(k, 0)

Also, the commutator diagram which corresponds to eqn 1-45. the backprojection
filter technique is

f = 	 fik1F2Wf}

f (XI Y) 	 AP) 0)

Y.2 I 	 R*

f(k, , ky )  	 f*
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DISCRETE INVERSION AND SAMPLING 1.8

Theorem 1). Any object (function f(x,y) ) can be determined by an infinite set
of Radon Transforms f(p,) which are defined onasetA3A=RxSn -1 - N
where N is a set of Null measure.

Theorem 2). ]f E 	 (IP) , f 0 3 f(p,w i ) = 0, V i.

Hence there is a non-uniqueness problem associated with the inversion problem
if given only finite information.

Now from Fourier analysis there is the Shannon sampling theorem which tells
how to recover a function from its sampled values.

Theorem (Shannon Sampling Theorem) 3). if x(t) is bandlimited (that is
/3(v) = 0 > vb ) then x(t) can be recovered uniquely from its sampled

values, if the sample spaces are not separated by more than At = —
1 

(known as
vb

the Nyquist sampling rate). Explicitly x(t) can be recovered by the following.

00sin [27rvb 	 -
	x(t)

=-co x
	 k

2vb 	 27rvb t - 24; )

DISCRETE RADON TRANSFORM INVERSION 1.9

It is the objective of this section to construct discrete versions of the Fourier
central slice theorem (eqn. 1-41) and the filtered backprojection reconstruction
technique (eqn. 1-44). Even though there is no gaurentee that the results will be
accurate as a result of Theorem 2. In order to do this we must employ the Shannon
Sampling Theorem for discrete bandlimited frequencies so that the original function
may be recovered.

Starting with the filtered backprojection reconstruction technique (eqn. 1-44)
which follows with the next three equations

f oo

	

f (q, 0) =	 f(p,o)e -2"qP dp	 (1-46)
-00

From eqn. 1-44 the original function f can be recovered by
2r

f (x , y) = f Q(x cos 0 y sin 0) d0	 (1-47)

where

Q(s , 0) =	 (q, cb)Igl e 27`i dq	 (1-48)

Now q has dimensions of a reciprocal length and thus can be seen as a frequency.
If the last integral in eqn. 1-48 is bandlimited with a bandwidth of wb or if eqn.
1-48 has negligable contributions for 1.71 > wb ; then Shannon's sampling theorem
can be applied for jql > wb.

Ap,sb) = 
00 	 sin [21-wb	

zwb)] 
	

(1-49)
00
	 27rwb -
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By taking the Fourier transform of eqn. 1-49 gives

.

f(q , o ) =
)— 27rzq i--

be	 w X1-1/2,1/21
q

\,2w b
(1-50)

If the assumption is made that N 1 sampled values of f(., cb) is accurate for a
representation, then eqn. 1-50 can be reduced to.

N/ 2

f (q, 	 =
2wb 	

—) 1 	 1 	 —272g-5 b X--

1.—N/2

q
(-1/2,1/2) (2wb (1-51)

Clearly f (q, cb) is zero outside the interval q E [--c,..)b,wb]. Also if f (q, q) is evaluated

at the points

2
q = m 

wb
where m =

then

N	 2wb	
f (.wb1

e-272.(mI/N)	 (1-52)
1.--N12 	

2

Which is a Discrete Fourier Transform (DFT). So by continuing in evaluating,
proceeding with eqn. 1-48.

00

Q(s , 0) = If (q, 0) Iql e 27risq dq

NI2
	2wb 	E 	(771, 2cab 15) 1772 2wb ie 2rzsm.(2w b /N)

m.- 2

by evaluating this at the sampled p = 1,.-c:Tb- gives

N/2

Q(
k	

=-

	

.,..c.ob
c.ob
	N	

I r
2w b 	 2wb 

e 
27rz(mk/N)

n—
2

m=-N/2

The final computation required to recover f (x, y) is

7r
f (x, y) —

K 1=1
Q(x cos	 y sin 0/) 	 (1-55)

where the angles cbi with 1 = 1, 2, ... , K are the angles used to sample the Radon
Transform Ap , 0). Thus the full discrete version of the filtered backprojection
reconstruction technique is given by eqns. 1-54 and 1-55.

N

N/2
2

f(m
Wb

—, 0) =

(1-53)

(1-54)
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Continuing with the Fourier central slice theorem given by eqn. 1-41 we have
the following

(q, 0) =- hp, 0) e -271- "P dp
03

Which gives the following recovery technique

f (x 	 = Y.2-1 (q cos 0, q sin 0, ) 	 (1-57)

Now if eqn 1-56 is bandlimited then we can apply Shannon's Sampling Theorem
to f (p, l). Thus by repeating the previous arguments used in developing the back-
projection technique, the variable q has dimentions of reciprocal length and can be
seen as a frequency. If the frequencies q are bandlimited by cob or if has neglibable
contributions for frequencies Iql > wb ; then Shannon's sampling theorem can be
applied for I ql > cub •

) sin [27rwbb 	-co

27-w b -

So, by taking the Fourier transform of eqn 1-58, gives

f (q, cb) = / 21
1—.

Now again if the assumption is made that N +1 sampled values of f 	 is accurate
for a representation, then eqn. 1-59 can be reduced to.

N12

kg, 	 = 2w b 	
(

2Wb
 ) e-271""3,T; x (-1/2,1/21 L(h)b 	

(1-60)
1.

1

—N12

Clearly f (q, cb) is zero outside the interval q E [—Wb , wb]. Also if f (q, ) is evaluated
at the points

q = m
wb 

where m 	 , 0 , 	 , 
N

then

N/ 2

	

2Wb 	 1 	 1 \ e -27rz(ml/N)grit 	 = 	 (1-61)
	N '	 2w b 	

f
b1.-N12

Which is a Discrete Fourier Transform (DFT). So by continuing in evaluating, pro-
ceeding with eqn. 1-57 which uses a polor to rectangular co-ordinate conversion,
thus 1-61, must undergo a polar to rectangular co-ordinate conversion. Thus some
form of interpolation must be performed if the polar co-ordinate points do not coin-
cide with the rectangular co-ordinate system. This can be accomplished by using a
nearest neighbour or a weighted interpolation scheme to map polar points (q, 0) to
(q cos 0, q sin c). Continuing once this co-ordinate transformation is completed and
by following similar logic, the original function f (x, y) can be recovered by applying
a 2-dimentional discrete inverse fast Fourier transform.

(1-56)

(1-58)

cc

11-1/2'1 	 2qwb) 	
(1-59)

1
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WAVELET ANALYSIS 2.0

Wavelet analysis is similar to Fourier analysis in that each seeks to find a or-
thonormal convergent series in the Hilbert space = L 2 (Q) that converges in the
L 2 (Q) norm. Where 7-t = L 2 (52) = If (x) I inlf(x)12 dx < col. Their differences
however can be observed from the following example in L 2 ( [0, 1] ). Consider a
function f(x) E = L 2 ( [0, 1] ) , it has Fourier series

f(x)=b0 +
	

(bk cos 27rkx + at sin 271-kx)

Also the same function has a Haar series (Wavelet series)

co 2 , -1

	f(x) = co +
	 k *(21 x — k)
j= k=0

where 0(x) is defined as

	

{1

	 if 0 < x < --

—	0(x) = —1 	 if 1 .< c < 1

	

0 	 otherwise.

The whole basic principle behind wavelet analysis is the Multiresolution Analysis
for constructing the wavelet basis functions ( 11)(x) in the previous example).

Multiresolution Analysis. A multiresolution analysis • • • C V_ 1 C Vo C V1 C
• • • with a scaling function co is an increasing sequence of subspaces of L 2 (I18) such
that:

(1) (density) Ui Vi is dense in L 2 (3.)
(2) (separation) ni vi = (0)
(3) (scaling) f(x) E Vj ,-->- f(2i x) E Vo
(4) (orthonorrnality) {(p(x — k)}kEz is an orthonormal basis for Vo

From part 3) and 4) of the Multiresolution Analysis it follows that the set
{2i/ 2 4,o(2ix — k)}k ez is an orthonormal basis for Vj.

The construction of the wavelet basis then proceeds as follows:
Starting with the basis set {yo(x — k)}k E z which is an orthonormal basis for Vo.
Hence

Vo = span (1(P(x — k )} kEz)
	

(2-1)

Now, in order to construct a basis for V1 , look at the orthogonal complement of Vo
in V1 , that is

Vi = V0 e Wo
	 (2-2)

In order to do this look at a basis generator of the following form

	7,b(x) = 	 ck yo(2x — k)	 (2-3)
kEIL

This is known as the dilation equation. Once 2-3 is solved and qk found then continue
in a similar fashion by repeating the process where

Vjd-i = v.; e	 = vi _, Ef) wi _	 • • •	 (2-4)
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This discussion is, however incomplete. Since there is no explicit means given
for solving the dilation equation(eqn. 2-3). Now by rewriting the dilation equation
(using p as opposed to 0 as in the Multiresolution Analysis) and taking its Fourier
transform we have

c)(x) = 	 ck co(2x — k)
kEZ

C°() =	 Ck eik"2 2 )
kEZ

P( 2 )g&

(2-5)

(2-6)

where

P() =2 LkEz ck e k e (2-7)

called the symbol.
When 	 0 then P(0) = 1 or E ck = 2, also for = 0 the solution tp must statisfy
c3(0) = 1 co(x) dx = 1. However what also can be said about (c) is that

=P (2 )c3(c3(2) = P(2 ) P(1)	 ) = • • • = 11 P	 )
2.1

(2-8)

These contructions lead to many different wavelet basises such as the Haar
wavelets, Poisson wavelets, Bessel wavelets, etc.. However, as a strong word of
WARNING there is no guarantee about the continuity, differentiablity, nor whether
the expansion makes sense in L l nor in LP. As an example the Weierstrass class of
functions defined by E an cos(bnx) are continuous and nowhere differentiable and
can be built up from multiple scales. As such, wavelets are used in the analysis of
these functions and other self similar objects such as fractals.

There still is one thing left to do. That is calculating the Fourier and Wavelet co-
efficients in the their respective function expansions. Starting with Fourier analysis
on the interval [0, 1].

	f (x) =
	

f (x)i ek(x)) ek(x)
	

(2-9)
kEZ

ek (x ) = e2rzkx

	(f (x)I g(x)) =	 f (x) j(x) dx

thus eqn. 2-9 can be expanded as follows

where

and
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f(x)
	

(f(x)(ek(x)) ek(x)
kE7L

,E (f f(x)e -27riks d;\

kEZ
	 ek(x)

f(k)ek(x) 	 (2-10)
kE Z

As for wavelet series, a similar procedure as above will be employed. The wavelet
transform can be defined as follows

	[VIlo.f1(b, a) = dx —1 (73 x
a b

) f(x)
—co 	 a

As such the function can be recovered similarly as it was in eqn. 2-10 by

00 23-1

f(x)
= E E [wpf] (k23,23)} (p(23 x — k)

k.o

One major advantage of useing wavelets is that the convergence is of exponential
rate in L 2 and the wavelet series can be truncated with minimal loss in accuracy.
In contrast Fourier series require many terms due to cancelation. Another major
advantage of wavelet series is that numerically their discrete versions can be im-
plemented very efficiently. This is due to the pyramid scheme created by Burt,
Adelson, Mallat and others; a discrete Fast Wavelet Transform (FWT). This algo-
rithm is has a computational cost of 2n. Where as Fast Fourier Transforms (FFT)
has a cost of a n log2 n. Wavelets have been very successful in such areas as data
compresion, namely the compression of fingerprint data by the FBI. Also, wavelets
have had some successes in signal analysis, acoustics, high resolution video, etc..

(2-11)

(2-12)
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WAVELETS APPLIED TO RADON TRANSFORM INVERSION 2.1

Just as before with Fourier analysis wavelet techniques can be applied to the
inverse Radon transform problem. Also as before there are wavelet techniques
which mirror the Fourier central slice theorem and there are wavelet techniques
which mirror the filter backprojection techniques. However the latter of the two
is of greater interest. Primarily, in that wavelet methods which are similar to
backprojection have had some success in limited angle tomography. Which is the
ability to reconstruct local areas of the function without scanning the entire function
and being able to do so by using scans passing through a limited range of angles.
This is of great importance in that with some objects it is difficult if not impossible
to create scans at any arbritary angle and also by being able to scan just the region
of interest one can reduce the radiation exposure of the object. This has been a
theoretical barrier in that in even dimentions local values are globally dependent
on the integral over hyperplanes, where as in odd dimensions local values of the
function can be recovered from local integrals over the hyperplanes.

Some success in local reconstruction has been achieved. Namely, Radon inversion
can be achieved using wavelet transforms in a similar fashion as was with Fourier
anlaysis. The formulation of the inverse Radon transform proceeds as follows

Theorem (Wavelet Inversion of the Radon Transform) 4). let {0 0 } 0E ro „ )
be a collection of even, real—valued, addmissible functions on R such that by ad-
missibility the functions are bounded, integrable and

sup 	 lP0(w)12	 < co
49E[0,7)

W3

and define kli(x) on 118 2

41(c.) cos 0, w sin 0) = 2%0(w) I -1

then
27 	 -

(x) = I 04,(xi cos (A. + x2 sin 0)4

and for any function f

27
W(41, f)(a, b) = a -112 f W(00, f) (a, bi cos + b2 sin 0) dO

The above theorem tells us how to use wavelet transforms to construct the in-
verse Radon transform of a function if given its Radon transform and given a family
of functions {0,6,} 0E[070 with the required addmissibility constraints. This method
outlined above is very similar to the Fourier technique employed using backprojec-
tion operator in that eqn. 2-14 almost mirrors the backprojection operation.

(2-13)

(2-14)
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APPLICATIONS OF THE RADON TRANFORM 3.0

a X - Ray Tomography.
If a homogeneous object is exposed to an X-Ray beam then the beam's intensity

upon leaving the object decreases as follows

= Ioe- Px	(3-1)

where I is the beam's intensity upon leaving the object, / 0 is the beam's original
intensity, is called the linear attenuation coefficient which depends on the density
of the material p and the atomic number Z. That is

= 	 Z)

Now if the beam passes through many different mediums in succession then the
eqn. 3-1 changes to

e- E,
1-0

If however the medium has a continuous attenuation coefficient then

I = e - fL p(x)ds

1-0

where I and /0 are known. This is related to the Radon transform by

- log — = I lc(x) ds
10 	 L

	= RA	 (3-3)

e Emission Tomography.
Emission tomography is the process by which one seeks out to determine the posi-

tion and concentration of some radioactive isotope. There are two types of Emission
Tomography dependent upon the radionuclide utilized. First, if the radionuclide
emits positrons e+ which behave accordingly to the reaction e+ e - + y.
Where each 7 ray photon is emitted 180° apart. The second just emits a single
photon y.

In either case if there is no attenuation then

(p, 0) = I f (x , y)ds

However, in most situations attenuation is not negligible then an alternative method
must be constructed to solve for the distribution of the isotope. Starting with single
photon emission problem, if a 7 photon is emitted at the point x = (x, y) and if that
photon travels along a line back to a detector defined by the following equation.

p = x' • e 	 (3-4)

(3-2)

(3-3)
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Then, the integration over L is replaced by the portion of L, call this L', for which

(x' - x) 	 0 	 (3-5)

where still has its usual interpretation as in section 1. Thus, there is an modified
attenuation of the form

A(x,y;p, 0) = exp (-(5(p - ♦ x l ) dx'
fx , e -L >X

and the projection data is tied to A by

1,09,0= 	 f c° A(x , y; p, q5) f (x , y) 6(p - x cos - y sin 0) dx dy 	 (3-7)
f 00 -co

This is refered to as the attenuated or exponential Radon transform.

°Ultrasound Tomography.
A sound pulse of an orignal pressure amplitude A o is transmitted by the scanning

equipment and A(p0) is received at a dectector. Now under ideal conditions we
have once again

A
- log --A-0 = Lp(x)ds

= Rft (3-8)

which is identical to eqn. 3-3 with the exception that A replaces I.
Another application in the field of ultrasound is the frequency shift method.

Which can be stated as follows

p(x)ds cc vZ - vt 	(3-9)

where vi is the incident frequency and vt is the transmitted frequency.
Yet another application in the field of ultrasound is the analysis of Propagation

Time Data. Which seeks out to reconstruct velocity distributions or equivalently
index of refraction distributions.

Now the time it takes for a pulse to travel from the transmitter to the receiver
is given by a line integral of the following form

ds
T(P,Cb) _IL

 V

where V = V(x, y) is a velocity profile. If one normalizes, then

Ids 	 dsTo 3.,
11,Vw IL V

(3-6)

(3-10)

(3-11)
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where Vu, is the velocity in water. Now if r, is the index of refraction which is given
by

n(x,Y) = V(x, y)

then we have a connection to the Radon transform via the following

140 r(p,o) = I (1 — n (x, y)) ds

= lJ2 [1 — ri(x,y)] 	 (3-13)

e Nuclear Magnetic Resonance Tomography.

The underlying principle of Nuclear Magnetic Resonance Tomography (NMR) is
that the ground state of a nuclei with an even number of protons and even number of
neutrons (even-even nuclei) is always in a zero intrinsic (spin) angular momentum
state. Now odd-even or even-odd nuclei have a spin state which is an odd integer
multiple of 2 , that is I = z , z, .... Now when one of these nuclei are exposed to a
magnetic field B o the nuclei then has 2/ + 1 energy states which are equally spaced
by

fAE = iBo

where p, is the nuclear magnetic moment. Now when an energy transition occurs a
photon will be emitted of the frequency

DE iLB0
/Jo = 	 -= 	h 	 27rhI

(3-15)

As such, once again this relates back to Emission Tomography and Radon Transform
theory applies as it did before.

e Other Applications of Radon Theory.
There are numerous applications of Radon Transform Theory in Tomograpghy.

Thses include such areas of interest as Radio Astronomy, Geophysics, Optics, Engin-
neering, Electron Microscopy, Radar, Curve and Edge Detection, Instrumentation,
etc..

Vw (3-12)

I
(3-14)
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CONCLUDING REMARKS 4.0

The objective of this thesis is to explore wavelet analysis and Fourier analysis as
it pertains to the Radon transform. More specifically, the use of efficient, effective
and accurate wavlet algorithms and Fourier methods applied to the Radon inversion
problem. One reason for persuing this goal is the high efficiency associated with
wavelet analysis in a numerical setting via the pryamid algorithm, a.k.a. the Fast
Wavelet Transform (FWT) as opposed to the Fast Fourier Transform (FFT).

Thus the thesis objectives are to analize the following three different method-
ologies in the Radon inversion problem. More specifically to compare the following
methods

1 The Fourier Central Slice Theorem
2 The Filter Backprojection Technique
3 Wavelet Transform Techniques

Also within each of these methods analize the following

1 Timing of Execution compared to problem size
2 Memory Usage compared to problem size
3 Accuracy of the Results both Locally and Globally
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FOURIER CENTRAL SLICE THEOREM ANALYSIS 4.1

The Fourier central slice theorem recalled aimed to invert the Radon
transform via eqn 1-41 which restated is the following

f =Fn 1 F1f

The discrete version of the method relies on the Fast Fourier Transform(FFT)11
which can be rapidally implemented an has an execution cost of rilog 2 n.
This execution cost is however dependent upon the number of sampled
points used n. If n is not a power of 2 then the execution cost would not be
2log 2 n. Now if the data associated with the Radon transform is stored in a
matrix where each row coincides with a different value of then the Fourier
Central Slice Theorem's job is to apply the FFT on each row. Inorder for
it to do this and gaurantee correct results the values at which the object
were scanned must coincide with specified radial scans. That is the object
must be scanned at incremental values of p starting with p = 0 and evenly
incremented by a fixed .gyp. Once this is complete then the algorithm must
make a change of co—ordinates from the polar pair (p, q) to rectangular
co—ordinates (x, y). Thus the algorithm must know which angular values
were used in scanning. When the algorithm does this it must allocate addi-
tional memory inorder to store the results from the interpolation between
co—ordinate systems. This means that an additional matrix must be cre-
ated dynamically to facilitate this. There is an inherent problem with this
interpolation. That is geometrically by refuring to figure 4.1 it is obvious
that there are more points clustered about the orgin and that points spread
out as one increases in p. Thus the interpolation will be very accurate near
the orgin but will have larger inaccuracies as one moves further from the
orgin. Thus the resulting final image will have degradations further from
the orgin. After the interpolation is complete, the algorithm must take an
inverse 2—dimentional FFT of the resulting matrix which will complete the
reconstruction. See Code that follows in Appendix.
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#define RADIALSIZE 16
*define THETASIZE 16
*define XSIZE 	 16

fine YSIZE 	 16
fine ULI (long unsigned int)

#include <complex.h>
#include <math.h>
#include <time.h>
#include <fstream.h>
#include "invradbp.cpp"
#include "invrad2f.cpp"

double rad_func(double , double );
double my_funct(double , double );

void main(void)

ofstream out("rdtest.out");
out « "Radon Information Following\n";
//typedef complex (*& CPTR)I -MSIZE];
//typedef complex (* CPT) [MSIZE];
typedef complex (& MPTR) [THETASIZE] [RADIALSIZE];
//complex radon_array(THETASIZEJLRADIALSIZE7;
//complex rdsave[THETASIZEHRADIALSIZEI;
//CPTR ptrl = CPT(radon_arry);
//CPTR ptr2 = CPT(rdsave);
//MPTR ptrl = radon_array;
//MPTR ptr2 = rdsave;
complex ** radon_array = allocator( ULI(THETASIZE), ULI(RADIALSIZE) , complex(0.) );
complex ** rdsave 	 = allocator( ULI(THETASIZE), ULI(RADIALSIZE) , complex(0.) );

complex * pt100 = &(radon_array[0][0]);
-omplex * pt200 = &(rdsave[0][0]);

.CPTR ptrl = radon array;
//complex ** ptrl = (complex ** )radon_array;
//complex ** ptr2 = (complex ** )rdsave;
int i;
int j;

for ( i = 0 ; i < THETASIZE ; i++ )

for (j=0;j< RADIALSIZE ; j++ )

radon_array[i][j]

rdsave[i][j]

= 	 complex(rad_func(double(j)/5.,
M_PI*doUble(i)/double(THETASIZE)

);
= radon_array[i][j];

out « i « " « j « " « rdsave[i][j] 	 endl;

}

unsigned long int Xdim = (unsigned long int) 	 (XSIZE);
unsigned long int Ydim = (unsigned long int) 	 (YSIZE);
unsigned long int Rdim = (unsigned long int) 	 (RADIALSIZE);
unsigned long int Tdim = (unsigned long int) 	 (THETASIZE);

clock_t tO = clock();

double ** outl =
inv_radon_via_FFTs(radon_array,Tdim,Rdim,Xdim,Ydim);

Lock_t tl = clock();

double ** out2 =
inv_radon_via_bkpr(rdsave,Tdim,Rdim,Xdim,Ydim);
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clock t t2 = clock();
clock_t t = t1-t0;

r7--lible tau = double(t)/CLK_TCK;

out « "elapsed time is for Fourier Slice " « tau « endl;

t = t2-t1;
tau = dotible(t)/CLK_ICK;

out « "elapsed time is for Backprojection " « tau « endl;

out « "Output from two FFT method follows\n";

for ( i = 0 ; i < Ydim ; i++ )

for ( j = 0 ; j < Xdim ; j++ )

out « i « " « j « " « outl[i][j] << endl;
}

out « "Output from back projection method follows\n";

for ( i = 0 ; i < Ydim ; i++ )
{
for (j=0;j< Xdim ; j++ )

out « i « " « j « " « out2[i][j] « endl;

deallocat( radon_array , ULI(THETASIZE),ULI(RADIALSIZE) );
deallocat( rdsave , 	 ULI(THETASIZE),ULI(RADIALSIZE) );

touble temp;
out « "Output true values\n";
int halfy = Ydim/2;
int halfx = Xdim/2;
for ( i = -halfy+1 ; i <= halfy ; i++ )

for ( j = -halfx+1 ; j <= halfx ; j++ )

temp = my_funct(double(j)/5.,doUble(i)/5.);
out « i « " « j « " « temp « endl;

double rad_func(double p , double phi )

const long double root_pi = sqrtl( 4.0L * atan1(1.0L) );
long double pl 	 = (long double) (p);
long double phil 	 = (long double) (phi);
long double temp;

temp = pl*pl*cosl(phil)*cosl(phil);
temp += 0.5L*( 1.0L - 3.OL*cosl(phil)*cosl(phil) );
temp *= root_pi*pl*expl(-pl*p1)*sinl(phil);

_ 4turn double ( t emp ) ;

}
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double my_funct(double x , double y )

long double xl = (long double) (x);
long double yl = (long double) (y);

Zg double temp;

temp = xl*xl*yl*expl(-xl*xl - yl*yl);

return double(temp);
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#if defined(INVRAD2F_CPP)
/* already defined */
#else
#define INVRAD2F_CPP

defined (MATH_H)
already defined */

#else
#include <math.h>
#endif
#if defined(COMPLEX_H)
/* already defined */
#else
#include <complex.h>
#endif
#if defined(FRFFT_CM_CPP)
/* already defined */
#else
#include "frfft_cm.cpp"
#endif
#if defined(DNORMALZ_CPP)
/* already defined */
#else
#include "dnormalz.cpp"
#endif
#if defined(ALLOCTDD_CPP)
/* already defined */
#else
#include "alloctdd.cpp"
#endif
#if defined(DEALLODD_CPP)
/* already defined */
#else
#include "deallodd.cpp"

dif

// Fourier Central Slice Theorem

template < class kind >
double ** inv_radon_via_FFTs kind & 	 array ,

unsigned long int theta_dim,
unsigned long int Rdim,
unsigned long int Xdim,
unsigned long int Ydim

kind datal = array;

int log2_Rdim = d_frfft_i( datal[0] , Rdim , 1. , lu );
int log2_Xdim = d_frfft_i( datal[0] , Xdim , 1. , lu );
int log2_Ydim = d_frfft_i( datal[0] , Ydim , 1. , lu );

if ( ( log2_Rdim >= 0 ) && ( log2_Xdim >= 0 ) && ( log2_Ydim >= 0 ) )

complex N = complex( 1./double( Rdim ) );

for ( unsigned long int 	 = 0 ; i < theta_dim ; i++ )

d_frfft_i ( datal[i] , Rdim , 1. );
d_normalizer_d( datal[i] , Rdim , N );

unsigned long int halfx = Xdim » 1;
unsigned long int halfy = Ydim » 1;

long int xl;
long int yl;
long int r;
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long int t;

complex ** data2 = allocator( Ydim, Xdim , complex(0.) );

for ( unsigned long int y = 0 ; y < Ydim ; y++ )
{

if ( y < halfy )
yl = y;

else
yl = y - Ydim;

for ( unsigned long int x = 0 ; x < Xdim ; x++ )

if ( x < halfx )
xl = x;

else
xl = x - Xdim;

if ( xl == 0 && yl == 0 )
r = t = 0;

else

r = (int)
( sgrt( double( xl * xl + yl * yl ) ) + 0.5 );

t = (int)
( atan2( double( yl ) , double( xl ) )
* theta_dim / M_PI + 0.5

);
if ( t < 0 )

t += theta_dim;
r = Rdim - r;

1
if ( ( t >= 0 ) && ( t < theta_dim ) && ( r >= 0 ) && ( r < Rdim ) )

data2[y][x] = datal[t][r];

else

data2[y][x] = complex(0.0);

for ( i = 0 ; i < Ydim ; i++ )

d_frfft_i ( data2[i] , Xdim , -1. );
1

complex * temp = new complex[Ydim];

for ( unsigned long int j = 0 ; j < Xdim ; j++ )
{

for ( i = 0 ; i < Ydim ; i++ )

temp[i] = data2[i][j];

d_frfft_i ( temp , Ydim , -1.);

for ( i = 0 ; i < Ydim ; i++ )

data2[i][j] = temp[i];

}
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delete [] temp;

double ** data3 = allocator( Ydim, Xdim , double(0.) );

for ( y = 0 ; y < Ydim ; y++ )

for ( unsigned long int x = 0 ; x < Xdim ; x++ )

data3[y][x] = real( data2[(y+halfy)%Ydim][(x+halfx)%Xdim] );
}

deallocat( data2 , Ydim , Xdim );

return( data3 );

else

return ( 0 );
1

#endif
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#if defined(INVRADBP_CPP)
/* already defined */
#else
#define INVRADBP_CPP

defined (MATH_H)
/ already defined */
#else
#include <math.h>
#endif
if defined(COMPLEX_H)

/* already defined */
#else
#include <complex.h>
#endif
#if defined(FRFFT_CM_CPP)
/* already defined */
#else
#include "frfft_cm.cpp"
#endif
#if defined(DNORMALZ_CPP)
/* already defined */
#else
#include "dnormalz.cpp"
#endif
#if defined(ALLOCTDD_CPP)
/* already defined */
#else
#include "alloctdd.cpp"
#endif

// Filtered Backprojection Technique

template < class kind >
ble ** inv_radon_via_bkpr ( kind & 	 array ,

unsigned long int theta_dim,
unsigned long int Rdim,
unsigned long int Xdim,
unsigned long int Ydim

kind datal = array;

int log2_Rdim = d_frfft_i( datal[0] , Rdim , 1. , lu );
int log2_Xdim = d_frfft_i( datal[0] , Xdim , 1. , lu );
int log2_Ydim = d_frfft_i( datal[0] , Ydim , 1. , lu );

if ( ( log2_Rdim >= 0 ) && ( log2_Xdim >= 0 ) && ( log2_Ydim >= 0 ) )

unsigned long int Width = Rdim » 1;

double* filter = new dodble[Rdim];

filter[0] =0.;

for ( unsigned long int i = 1 ; i <= Width ; i++ )

filter[Rdim-i] = filter[i] = double(i);

complex N = complex( 1./double( Rdim ) );

for ( i = 0 ; i < theta_dim ; i++ )

d_frfft_i ( datal[i] , Rdim , 1. );
d_normalizer_d( datal[i] , Rdim , N );

for ( unsigned long int j = 0 ; j < Rdim ; j++ )
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datal[i][j] *= filter[j];

d_frfft_i ( datal[i] , Rdim , -1. );

delete [] filter;

double * sin_table = new double[theta_dim];
double * cos_table = new double[theta_dim];

for ( i = 0 ; i < theta_dim ;

sin_table[i] = sin( (double (i))*M_PI/ double(theta_dim) );
cos_table[i] = cos( (double (i))*M_PI/ double(theta_dim) );

}
long int halfx = Xdim » 1;
long int halfy = Ydim » 1;

double scale 	 = 1./(double(theta_dim*theta_dim) );
double val 	 = 0.0;
double position;

double ** data2 = allocator( Ydim, Xdim , double(0.) );

long int j;

for ( long int y = -halfy ; y < halfy ; y++ )
{

for ( long int x = -halfx ; x < halfx ; x++ )

val = 0.0;

for ( i = 0 ; i < theta_dim ; i++ )

position = double(x) * cos_table[i] + double(y) * sin_table[i];
j = (position >= 0.0) ?

( (int) (position + 0.5 ) ):
( (int) (position - 0.5 ) );

if ( j < 0 )
j += Rdim;

val += real( datal[i][j] );

data2[y+halfy][x+halfx] = val*scale;
}

delete [] sin_table;
delete [] cos_table;

return( data2 );

else
{

return ( 0 );

#endif
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/* Function d frfft_i Fractional fast fourier transform of an
/* double array

1SAGE: int d frfft_i( kind & 	 data_p
unsigned long int n_sampled

/* 	 double 	 fractional_d,
/*	 unsigned long int log only )
/* INPUT PARAMETERS:
/*
/* This finction requires the following

1) kind & data_p 	 NOTE: kind is a templated type 	 */

a) a pointer pointing to an array of complex 	 */
where the elements of the array are to 	 */

be treated as the sampled function at evenly 	 */

spaced points. The type kind is a template 	 */

where upon dereferencing *data_p returns a 	 */

complex also pointer addition is to be supported.*/
*/

data_d[0] = complex(f(t0))
	 */

data_d[1] = real(f(t0+1*delta_t))
	 */

data_drn_sampled i - 1] =
	 */

complex(f(t0+(n sampled i - 1)*delta_t))*/
b) upon completion of this function the fractional */

/^

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/* RETURNS:
/*
/* This function
/* if this value
/*
/*
/*
/*
/*

fast fourier trans from will be stored in the
array accessed by the pointer data_p with the
same format as above

2) unsigned long int n_sampled i
an unsigned long integer specifying the number
of sampled pts. PLEASE NOTE that this number
must be a POWER OF 2 and that this number
is HALF of the TOTAL NUMBER OF ELEMENTS OF
THE ARRAY.

3) double fractional_d
a double real where this number defines
the fractional fast fourier trans from
as in 	 Review
Vol 33. No 3. pp. 389-404 Sept 1991

F(f(t),alpha) (k) =
sum(j=0,n -1) (f(j)exp(-2_pi i j k alpha/n))

PLEASE NOTE: fractional_d = 1
gives the standard Fast Fourier Transform

PLEASE NOTE: alpha above is fractional_d

fractional_d = -1
gives the inverse Fast Fourier Trans from

upon completion will return an int where
is:

positive: successful completion
where value is log2(number of pts.)

-2:improper array size ie. not a power of 2
0 :array size of zero
-1:negative array size

#if defined(FRFFT_CM_CPP)
/* already defined */
else

fine FRFFT_CM_CPP

#include <complex.h>
#if defined(MATH_H)
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/* already defined */
#e1se
#include <math.h>

dif
defined(BITREV_U_C)

/* already defined */
#else
#include "bitrev_u.c"
#endif

template < class kind >

int d_frfft_i( kind &
unsigned
double
unsigned

data_p,
long int n_sampled_i,

fractional_d = 1.0 ,
int log_only = 0 )

/* LOCAL PARAMETERS:

unsigned long int i;
unsigned long int j;
unsigned long int istep_i;
unsigned long int m;
unsigned long int m_max_i;

unsigned 	 int log2_n_sampled_i = 0;

long double theta_d;
long double trig_real_d;
long double trig_imag_d;

const long double neg_2_pi_d	 = -8.0L*atan1(1.0L);
// -6.28318530717959;

complex temp;
complex trig_cmplx;
complex weight_cmplx;

complex* temp_cmplx;

/* First thing check to see if n_sampled i is a power of 2
/* or 0

/*[{(0 program start

j = n_sampled_i;

/*[(fl IS number of sample points positive ?

if ( j > 0)

/*{{{2 DO: shift bits right :UNTIL righter most bit is 1

while ( (j%2) != 1)

j »= 1;
log2_n_sampled_i++;

}11 END DO WHILE

/*{{(2 IS number of sample points NOT a power of 2 ?

if ( j > 1)



*/
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{
return ( - 2);

else

calculate fractional fast fourier transfo 	 m

if ( log_only )
return log2_n_sampled_i;

theta_d 	 = (long double)(fractional_d) * neg_2_pi_d;

temp_cmplx 	 = & temp;

/*({{3 FOR LOOP : perform bit reversal on the array

for ( i = 1 ; i < n_sampled_i ; i ++ )

j = bitrev_uli( i , log2_n_sampled_i );

/*(((4 IS j greater than i ? exchange the complex numbers

if ( j > i )
{
*(temp_cmplx) 	

• 

*(data_p + j );
*(data_p + j ) 	

• 

*(data_p + i );
*(data_p + i ) 	

• 

*temp_cmplx;
1

/*4}11 END IF : finished exchange

}

P.311) END FOR : finished bitreversal

/*(((3 the Danielson-Lanczos routine where the outer loop is
/* to be performed (1n(n_sampled i)) / ln(2) - 1 times

for ( m_max_i = 1 ; m_max_i < n_sampled_i ; m_max_i = istep_i )

istep_i = m_max_i « 1 ;

theta_d 	 /= 2.0L ;

trig_real_d 	 = sinl( 0.50L * theta_d);
trig_real_d *= (-2.0L * trig_real_d);
trig_imag_d = sinl(theta_d);

trig_cmplx 	 = complex(trig_real_d,trig_imag_d);
weight_cmplx = complex(1.0);

/*([(4 first For nested loop for Danielson-Lanczos routine
	 */

for ( m = 0 ; m < m_max_i ; m ++ )

/*{{{5 second For nested loop for Danielson-Lanczos routine
	 */

for ( i = m ; i < n_sampled_i ; i += istep_i)

j = i + m_max_i;

*temp_cmplx 	 = *(data_p + j ) * weight_cmplx;
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*(data_p + j ) 	 = *(data_p + i ) - *temp_cmplx;
*(data  p + i) 	 += *temp_cmplx;

/ 5)11 finished inner For loop for Danielson-Lanczos routine
	 */

weight_cmplx *= (trig_cmplx + 1.0);

}

/*4))) finished outer For loop for Danielson-Lanczos routine
	 */

/*3))) END FOR Danielson-Lanczos routine finished
	 */

return (log2_n_sampled_i);

/*2))) END IF: finished fractional fast fourier transfrom
	 */

else

return (-1);
}

/*1))) ENDIF: finished processing
	 */

/*OM END OF FUNCTION

#endif
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/* This function performs bitreversal on an unsigned long
/* integer.
7' INPUT PARAMETERS: 1) unsigned long integer t_uli

number to be bitreversed
/, 	 2) unsigned integer k
/* 	 number of binary digits

#if defined(BITREV_U_C)
/* already defined */
#else
*define BITREV_U_C
unsigned long int bitrev_u1i( unsigned long int t_uli,

unsigned 	 int k )

unsigned long int j;
unsigned long int rev_uli = 0;
unsigned 	 int i;

for ( j = t_uli, i = 1 ; i <= k ; i++ )

rev_uli += ( (j%2) « ( k - i) );
j 	 »= 1;

return (rev_uli);

1
#endif



DNORMALZ.CPP
	

March 29, 19 96 	Page 1

#if defined(DNORMALZ_CPP)
/* already defined */
#else

DNORMALZ_CPP

template < class kind >
void d_normalizer_d(

kind & 	 array,
unsigned long int num_of_elements,
complex 	 number

for ( unsigned long int i = 0 ; i < num_of_elements ; i++ )

*( array + i ) *= number;

#endif



COLVEC.HPP 	 March 29, 1996 	 Page

template <class kind ,unsigned long int size>
class col_vector

private:

;ypedef kind (*PKA)[size];

PKA ptr_to_array;

public:

col_vector( PKA p )
{ ptr_to_array = p; }

col_vector( kind * p )
{ ptr_to_array 	 PKA(p); }

operator PKA()
{return ptr_to_array; }

operator kind * ()
{return ( (kind *) ptr_to_array ); )

kind & 	 operator*()
{return **ptr_to_array; }

kind &

	

	 operator[]( int i )
{return **(ptr_to_array+i); }

col_vector operator+( int i) 	 //addition
{return col_vector<kind,size>(ptr_to_array + i); }

col_vector operator-( int i) 	 //subtraction
{return col_vector<kind,size>(ptr_to_array - i); }

col_vector & operator+=( int i ) 	 // +=
{ptr_to_array += i; return *this; }

col_vector & operator-=( int i ) 	 // -=
{ptr_to_array -= i; return *this; }

col_vector & operator++()
	

// prefix ++
{++ptr_to_array; return *this; }

col_vector & operator--()
	

// prefix --
{--ptr_to_array; return *this; }

col_vector operator++(int) 	 //postfix P++
{col_vector<kind,size> temp = *this; ptr_to_array++;
return temp; }

col_vector operator--(int) 	 //postfix P--
(col_vector<kind,size> temp = *this; ptr_to_array--;
return temp; }

col_vector operator »=( int i) 	 //shift over i cols left
{ptr_to_array = PKA( (kind *)(ptr_to_array) + i );
return *this; )

col_vector operator«=( int i) 	 //shift over i cols right
{ptr_to_array = PKA( (kind *)(ptr_to_array) - i );
return *this; }

col_vector operator»( int i) 	 //shift over i cols left
{return col_vector<kind,size>( (kind *)(ptr_to_array) + i );

col_vector operator«( int i) 	 //shift over i cols left
{return col_vector<kind,size>( (kind *)(ptr_to_array) - i ); }

} ;

//constr. from

//constr. from

//type cast to

//type cast to

//dereference

//index

ptr to array

a ptr

ptr to array

a ptr



DDFFT_CM.CPP 	 March 29, 199 6 	Page

#include <complex.h>
#include "frfft_cm.cpp"
#if defined(COLVEC_HPP)
/* already defined */

se
include "colvec.hpp"

#endif
template < class kind >

	int dd_frfft_i ( kind & 	 array,
unsigned long int num_of_rows,
unsigned long int num_of_cols,
double frac_d

{

int log2_rows = d_frfft_i( array , num_of_rows , frac_d , lu );
int log2_cols = d_frfft_i( array , num_of_cols , frac_d , lu );

if ( log2_rows >= 0 && log2_cols >= 0 )

kind P_col_cmplx = array;

complex * ptr_cmplx;
for ( unsigned long int i = 0 ; i < num_of_rows ; i++ )

ptr_cmplx = (complex *)(P_col_cmplx++)

d_frfft_i( ptr_cmplx , num_of_cols , frac_d );
1

P_col_cmplx -= num_of_rows;

for ( unsigned long int j = 0 ; j < num_of_cols ; j++ )
{

d_frfft_i( P_col_cmplx , num_of_rows , frac_d );

P_col_cmplx »= 1;
}

return ( log2_rows + log2_cols );

else

return ( (log2_rows > log2_cols )?log2_cols:log2_rows ) ;
1
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#include "dnormalz.cpp"

template < class kind >
void dd_normalizer_d(

kind & 	 array,
unsigned long int num_of_rows,
unsigned long int num_of_cols,
complex number

kind 	 P_col_cmplx = array;
complex * ptr_cmplx;
for ( unsigned long int i = 0 ; i < num_of_rows ; i++ )

ptr_cmplx = (complex *) (P_ col_cmplx++);
d_normalizer_d( ptr_cmplx , num_of_cols , number);

1
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#if defined(ALLOCTDD_CPP)
/* already defined */
#else
* ,fine ALLOCTDDCPP
/ / #i f defined (EXCEPT
/* already defined */
//#else
//#include <except.h>
//#endif
#if defined(IOSTREAM_H)
/* already defined */
#else
#include <iostream.h>
#endif

template < class kind >
kind ** allocator( unsigned long int rows ,

unsigned long int cols ,
kind dummy

kind ** data;
// try

data = new kind *[rows];
for ( unsigned long int j = 0 ; j < rows ; j++ )

data[j] = new kind[cols];

return ( data );
}

/* catch( xalloc )

cerr << "\n Could not allocate data\n";
return( 0 );
*/

#endif
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#if defined(DEALLODD_CPP)
/* already defined */
#else

fine DEALLODD_CPP
_f defined(EXCEPT 11)

/* already defined */
//#else
//#include <except.h>
//#endif
#if defined(IOSTREAM_H)
/* already defined */
#else
#include <iostream.h>
#endif

template < class kind >
void deallocat( kind ** 	 data,

unsigned long int rows ,
unsigned long int cols

//try

for ( unsigned long int j = 0 ; j < rows ; j++ )

delete [] data[j];

delete [] data;
1

/* catch( xalloc )
{

cerr « "\n Could not deallocate data\n";
) */

#endif
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