
SERVICING & CUSTOMIZING
WINDOWS XP EMBEDDED

G W Y N E T H S A L DA N H A

APRIL 2007

Department of Mathematics and Computer Science

Algoma University College, Sault Ste. Marie, Ontario

© Gwyneth Saldanha

GWYNETH SALDANHA

PAGE 2 OF 88

A B S T R A C T

This thesis will attempt to examine the issues involved in customizing or modifying the

hardware or the underlying operating system for thin client devices based on Microsoft Windows

XP Embedded and offer a solution for working through the required process.

GWYNETH SALDANHA

PAGE 3 OF 88

TA B L E O F C O N T E N T S

CHAPTER 1 : INTRODUCTION..8

1.1 EMBEDDED OPERATING SYSTEMS ...8

1.2 OBJECTIVE OF THE THESIS ...9

CHAPTER 2 : XP EMBEDDED: AN OVERVIEW...10

2.1 THE MICROSOFT EMBEDDED PLATFORM ...10

2.2 WINDOWS XP EMBEDDED ...11

2.3 DIFFERENCE BETWEEN WINDOWS XP AND WINDOWS XP EMBEDDED ..13

2.4 SYSTEM REQUIREMENTS AND COSTS...14

2.4.1 Development System Requirements...15

2.4.2 Target Device Requirements ...15

2.4.3 Licensing Costs ...16

2.5 SUMMARY..17

CHAPTER 3 : THE EMBEDDED STUDIO TOOLS ..18

3.1 TARGET ANALYZER...18

3.2 COMPONENT DESIGNER ...20

3.3 COMPONENT MANAGEMENT INTERFACE ...22

3.4 COMPONENT DATABASE MANAGER ..23

3.5 TARGET DESIGNER...24

3.6 EMBEDDED ENABLING FEATURES..26

3.7 THE COMMAND LINE TOOL ...29

3.8 SUMMARY..30

CHAPTER 4 : XP EMBEDDED IMAGE DEVELOPMENT CYCLE ..31

4.1 CREATING AN XP EMBEDDED IMAGE ..31

4.1.1 Analyzing the Target Computer ..31

4.1.2 Create a Component for the Target Device ..32

4.1.3 Creating a New Configuration in Target Designer...34

4.1.4 Update Configuration Settings..35

4.1.5 Check Dependencies ...35

4.1.6 Build the Run-Time Image ..36

4.1.7 Deploy the Run-Time Image..37

GWYNETH SALDANHA

PAGE 4 OF 88

4.2 BOOTING FROM USB FLASH ..38

4.2.1 Overview ...38

4.2.2 Format USB Media ...39

4.2.3 Add USB Boot 2.0 Component ..40

4.2.4 Build Target Image and Transfer to USB Media ..41

4.2.5 Boot with the USB Media ..41

4.3 DEMONSTRATING XP EMBEDDED WITH VIRTUAL PC..42

4.3.1 Setting up the Virtual Machine..42

4.3.2 Capturing the Hardware Information ...43

4.3.3 Building and Deploying the Image..43

4.3.4 Running XP Embedded ...43

4.4 SUMMARY..44

CHAPTER 5 : COMPONENTS AND COMPONENTIZATION...45

5.1 COMPONENT DEVELOPMENT ...46

5.2 ADVANCED COMPONENT DEVELOPMENT ..47

5.2.1 Tools Used on the Development PC..48

5.2.2 Tools Used on the Target Device ..49

5.3 COMPONENT SUPPORT FROM THIRD-PARTY VENDORS..50

5.4 SUMMARY..51

CHAPTER 6 : MANAGING AND SERVICING RUNTIME IMAGES..53

6.1 UPDATES OVERVIEW ...53

6.2 DATABASE UPDATES ...54

6.2.1 Creating a Database Update...55

6.2.2 Advantages of a Database Update ..56

6.2.3 Issues with Database Updates...56

6.3 DESKTOP UPDATES..56

6.4 SERVICING EMBEDDED DEVICES ...57

6.4.1 Recovery CD ...58

6.4.2 Run-Time Image Replacement ..59

6.4.3 Remote Management...60

6.4.4 Device Update Agent...60

6.4.5 Software Update Services (SUS) ...60

6.4.6 Systems Management Server (SMS) ..63

6.5 DEVICE UPDATE AGENT ..64

6.5.1 Using Device Update Agent ..65

6.5.2 Web Server Configuration...66

GWYNETH SALDANHA

PAGE 5 OF 88

6.5.3 Security Issues...67

6.6 SUMMARY..68

CHAPTER 7 : SECURITY CONSIDERATIONS..69

7.1 ASSESSING YOUR SECURITY RISK...70

7.2 REDUCE YOUR SECURITY RISKS ...72

7.3 BUILDING IN WINDOWS SECURITY ..72

7.4 SECURING PHYSICAL MEDIA BY USING ENHANCED WRITE FILTER...74

7.5 PROTECTION FROM COMPUTER VIRUSES ...75

7.5.1 EWF is NOT an Anti-Virus Solution ...75

7.6 SUMMARY..76

CHAPTER 8 : COMPARISON WITH OTHER EMBEDDED OPERATING SYSTEMS................................78

8.1 WINDOWS CE ..78

8.2 WINDOWS EMBEDDED NT...80

8.3 EMBEDDED LINUX ...81

8.4 SUMMARY..84

CHAPTER 9 : CONCLUSION ..85

9.1 WINDOWS VISTA FOR EMBEDDED SYSTEMS..85

9.2 SUMMARY..86

GWYNETH SALDANHA

PAGE 6 OF 88

L I S T O F F I G U R E S

FIGURE 1: WINDOWS XP EMBEDDED IS A COMPONENTIZED VERSION OF WINDOWS XP ..13

FIGURE 2: LICENSING COSTS..16

FIGURE 3: EMBEDDED STUDIO TOOLS..18

FIGURE 4: THE COMPONENT DESIGNER..21

FIGURE 5: THE COMPONENT DATABASE MANAGER...24

FIGURE 6: THE TARGET DESIGNER...25

FIGURE 7: SET THE COMPONENT VISIBILITY LEVEL IN TARGET DESIGNER'S 'TOOLS > OPTIONS'26

FIGURE 8: EMBEDDED ENABLING FEATURES ...28

FIGURE 9: PARTIAL OUTPUT WHEN RUNNING TAP.EXE ON TARGET DEVICE..32

FIGURE 10: IMPORTING THE TARGET PMQ FILE AS A COMPONENT..33

FIGURE 11: ADDING THE SELECTOR PROTOTYPE COMPONENT AS THE PROTOTYPE ...34

FIGURE 12: RESOLVE DEPENDENCIES BY CLICKING ON THE TASK NAMES..35

FIGURE 13: BUILDING AN IMAGE..37

FIGURE 14: FORMAT THE USB MEDIA WITH UFDPREP.EXE ..40

FIGURE 15: ADD THE USB BOOT 2.0 COMPONENT...40

FIGURE 16: BUILD THE USB BOOTABLE IMAGE..41

FIGURE 17: FILE RESOURCE DETAILS...47

FIGURE 18: SUS OVERALL PROCESS..62

GWYNETH SALDANHA

PAGE 7 OF 88

L I S T O F T A B L E S

TABLE 1: UPDATE TERMINOLOGY..53

TABLE 2: UPDATE TYPE BASED ON DEPLOYMENT METHOD...54

TABLE 3: SERVICING OPTIONS ...58

TABLE 4: AUTOLOGON LEVELS ...68

TABLE 5: RECOMMENDED WINDOWS EMBEDDED OPERATING SYSTEM BY DEVICE CATEGORY79

GWYNETH SALDANHA

PAGE 8 OF 88

CHAPTER 1 :

INTRODUCTION

1.1 Embedded Operating Systems

Imagine being able to rebuild Windows exactly how you want, with nothing more or less than

what you need to do what you want. Imagine having a Windows so customizable that you can

simply drag and drop the components you want--components that you may have tweaked or built

from scratch – into a complete OS of your making. Sounds like a dream operating system, doesn't

it? Well, that's the basic premise of Microsoft’s Windows XP Embedded – the ability to custom

make Windows in your image. It has everything XP Professional has: all the compatibility and,

unless you specifically put it in, none of the bloat.

Traditionally, XP Embedded has only been used in things like dumb terminals that don't need

the full XP experience, but it works just as well (if not better) on the desktop than traditional XP

Professional since it's custom built and has no bloat.

This paper attempts to analyze issues with servicing and customizing Microsoft's embedded

operating system – Windows XP Embedded.

GWYNETH SALDANHA

PAGE 9 OF 88

1.2 Objective of the Thesis

An embedded operating system is quite different from the traditional operating system. Many

are skeptical about taking on the daunting task of using Microsoft’s Windows XP Embedded (often

referred to as XPe). Some of the common perceptions that consumers seem to have about Windows

Embedded operating system range from; ‘The operating systems are too big’, ‘The operating systems

are not secure’, ‘It’s too hard to configure an operating system for my needs’, ‘There’s no driver

support for my hardware.’

This thesis aims to educate the reader about working with XP Embedded and explore some of

the main issues that consumers face. For this thesis Windows XP Embedded Service Pack 2 Feature

Pack 2007 has been used. The thesis is divided into 3 sections. First an introduction to Windows XP

Embedded is presented to familiarize the reader with the process of creating and deploying XP

Embedded images. Next the issues of customizing, updating and servicing the deployed images are

addressed. Lastly a comparison between competing embedded operating systems is explored.

Although XP Embedded was released in 2001 there are a lot of consumers with confused faces.

It’s been an elating experience clearing the confusion off of my face.

GWYNETH SALDANHA

PAGE 10 OF 88

CHAPTER 2 :

XP EMBEDDED: AN OVERVIEW

2.1 The Microsoft Embedded Platform

Microsoft’s mission in this thriving embedded market is to deliver adaptable and scalable

platforms for 32-bit, connected devices that enable rich applications and services.i

Microsoft officially entered the embedded marketplace in November of 1996 with the release of

Windows CE 1.0. Windows CE was designed from the ground up to provide embedded developers

with the ability to extend the “sophisticated software environment of today’s personal computer into the embedded

world,” according to Craig Mundie, then Senior VP of the Consumer Platforms Division at

Microsoft.

After the release of Windows CE, Microsoft quickly discovered that many embedded developers

were building a wide range of non-PC devices that were neither small nor resource constrained and

could benefit from a PC-based architecture, an enhanced set of features, richer functionality and

greater scalability than what Windows CE could provide at the time. In 1999, to compliment its

embedded offerings, Microsoft delivered Windows NT Embedded to the market, thereby providing

GWYNETH SALDANHA

PAGE 11 OF 88

embedded developers with greater choice and flexibility as well as access to the rich Windows

feature set.

In 2001, Microsoft released Windows XP Embedded, the successor to Windows NT

Embedded, which provides a wealth of new features created for the mainstream operating system,

and is available for the embedded marketplace in componentized form.

The Windows Embedded family of operating systems provides developers with the building

blocks to create a wide variety of embedded devices, for example: industrial control systems, mobile

and handheld devices, set-top boxes, retail point of sale devices, and thin clients. Developers can

choose only those components of the operating system needed to satisfy device design

requirements.

Windows Embedded customers can be categorized within two groups: original equipment

manufacturers (OEMs) and their partners who customize an operating system to meet specific

design needs, and groups within Microsoft that are building specific device platforms, such as

Pocket PC.

2.2 Windows XP Embedded

The embedded version of Windows XP is a componentized version of the well-known

Windows XP Professional operating system. Instead of everything being wrapped tightly into a

single package, XP Embedded breaks the OS down into more than 10,000 individual components,

GWYNETH SALDANHA

PAGE 12 OF 88

allowing developers to create systems that have the functionality and familiar features of XP. One of

the most attractive features of XP Embedded is that it is much smaller than XP for desktop systems

— so small, in fact, that it can fit on a 512 MB flash card, and still leave room for system

applications and data backupii.

There are 2 service pack releases for XP Embedded, namely SP1 and SP2. Microsoft launched

Windows XP Embedded SP2 Feature Pack 2007 in November 2007. This feature pack extends

Windows XP Embedded Service Pack 2 providing developers with new embedded enabling

features, re-optimized OS components, enhanced servicing options and powerful embedded-specific

development toolsiii.

Also of great interest for the embedded system developer are XP Embedded’s choices of boot

methods, its wide range of communications options, and the array of tools available for system

configuration. XP Embedded uses the same application programming environment as XP, which

makes application development quick and easy, and allows the same application to run on desktop

and embedded machines. And it has improved code protection for critical kernel structures, file

protection and more.

A few of the many possible consumer and commercial applications of XP Embedded would

include set top boxes and terminals such as kiosks and ATMs.

GWYNETH SALDANHA

PAGE 13 OF 88

2.3 Difference between Windows XP and Windows XP embedded

Both Windows XP Embedded and Windows XP are built on the same stable code base of

Microsoft Windows NT® and Windows 2000. This code base offers a protected memory model and

pre-emptive multitasking, both of which contribute to system stability. Starting from this proven

code base, Windows XP Embedded is fundamentally reliable starting at the kernel level.

Figure 1: Windows XP Embedded is a componentized version of Windows XP

The difference between the Windows XP desktop operating system and the Windows XP

Embedded operating system is that Windows XP Embedded is modularized into components.

Componentization makes it easy to build fixed-function devices, and to reduce the footprint of a

target run-time image. You can use Windows XP Embedded to build a run-time image that includes

only the Windows components that your device requires. As long as you include the required

dependencies in your run-time image, you can maintain the application compatibility that you need

to run your applications. Componentization also makes it easier to reduce security risks by designing

run-time operating systems with limited surface area. The smaller the footprint of your run-time

image, the smaller the surface area of the operating system. Less surface area means less risk of

intrusion. For example, if you do not require networking capabilities, you can exclude networking

components from your run-time image.

GWYNETH SALDANHA

PAGE 14 OF 88

Even though Windows XP Embedded is built from the same binary files that Windows XP

Professional uses, Windows XP Embedded does not share all the features of Windows XP

Professional. Some features in Windows XP Professional are not appropriate for embedded device

scenarios. For example some Windows XP Professional features that are not included in Windows

XP Embedded are: the Windows File Protection (WFP), Windows XP Tour, Windows Setup,

Online product activation, Out-Of-Box Experience (OOBE), Windows Update and MSN®

Exploreriv. These are not included in Windows XP Embedded because of the highly customized

nature of Windows XP Embedded-based operating systems.

2.4 System Requirements and Costs

In addition to over 12,000 feature components, the Windows® XP Embedded toolkit includes

the following development software:

 Microsoft Visual Studio

 Microsoft .NET Framework

 Microsoft Windows Embedded Studio, a full suite of development tools

including: Target Analyzer, Target Designer, Component Designer, Component

Database, Component Database Manager. These are described in detail in the

next chapter.

GWYNETH SALDANHA

PAGE 15 OF 88

2.4.1 Development System Requirements

A development system is used to assemble and build the run-time image for the target device.

The development system is either a true client or a client and server. The Development System

requirements are as follows.

Client requirements:

 Pentium III, or equivalent, 256 megahertz (MHz) processor

 256 megabytes (MB) of memory

 Approximately 2 gigabytes (GB) disk that will contain tools and images

Server requirements:

 Pentium III, or equivalent, 256 MHz processor

 256 MB of memory

 Approximately 10 GB disk that will contain the component database and

repositories

2.4.2 Target Device Requirements

The main requirement for the target device it that it must have an Intel x86 or fully compatible

processor. In order to use the Target Analyzer to determine the basic hardware configuration, the

target device must be able to boot MS-DOS from a disk or be running Windows 2000/XPv.

GWYNETH SALDANHA

PAGE 16 OF 88

2.4.3 Licensing Costs

To ship a device and bring it to market, runtime licenses and certificates of authenticity are

required for each unit shipped. The cost for each runtime license may vary, based on the volume of

licenses that are purchased.

Figure 2: Licensing Costsvi

The Microsoft Support Lifecycle Policy guarantees that Microsoft provides five years of

mainstream support and five years of extended support for Windows Embedded products after

release, for a total of 10 years of support for the embedded devicevii.

GWYNETH SALDANHA

PAGE 17 OF 88

2.5 Summary

Now that we know what are the technical requirements of the development and deployment

environment we can familiarize ourselves with the Embedded Studio Tools and how they are used

to develop a XP Embedded runtime image.

GWYNETH SALDANHA

PAGE 18 OF 88

CHAPTER 3 :

THE EMBEDDED STUDIO TOOLS

The architecture of Windows XP Embedded is a complicated beast, too long for this thesis.

Instead, this section focuses on the architecture behind the individual tools in a structured manner.

Figure 3: Embedded Studio Tools

3.1 Target Analyzer

The Target Analyzer consists of the Target Analyzer probe utility and the Target Analyzer

importer.

There are two flavors of the Target Analyzer probe utility, one for a full or limited Win32 system

(called TAP.EXE), and one for DOS systems (called TA.EXE). You can run TAP.EXE on

Windows XP, Windows 2000, or a WinPE (Preinstall Environment) CD system. TA.EXE runs best

GWYNETH SALDANHA

PAGE 19 OF 88

under DOS, or a Win9X boot disk command prompt. If you can boot your device to Windows XP

or Windows 2000, then TAP.EXE is your best bet.

TA.EXE should only be used if you absolutely cannot install or boot a full Win32 environment

on your device. The reason being that TAP.EXE gets its hardware information directly from the

Win32 registry whereas TA.EXE has to query the hardware directly, and in 16-bit mode as well, so

it's limited to asking the BIOS for the hardware list. This limits us to devices that the BIOS knows

about, which means we can't enumerate IDE, SCSI, PCI, or other device bussesviii.

The Target Analyzer Probe (tap.exe or ta.exe) when executed on the target machine produces a

listing of all hardware devices on the target in the form of an XML based .pmq file.

The Target Analyzer Importer is a module of the Component Designer and Target Designer.

The .pmq can be imported into either. If the .pmq is imported into the Component Designer a

component with dependencies on the identified hardware drivers is created. If the .pmq is imported

into Target Designer then appropriate device drivers are added to the configuration. Importing the

.pmq ensures that the component or configuration includes all of the resources necessary to support

the devices of the target.

Some caveats bear mentioning. TAP.EXE is very good at what it does; sometimes it's too good.

TAP.EXE can pick-up ghost devices—devices that have been previously, but are not currently,

installed on the system. Usually these are USB devices. So it’s important to make sure all the

hardware in the component is current and valid. An alternative would be to run TAP.EXE on a

clean install of Windows XP or Windows 2000. Lastly, devices gathered from a Windows 2000

system may have different names in Windows XP Embedded. You'll have to use your own intuition

to find out what the new devices are if you want to disable them from the Device Manager list.

GWYNETH SALDANHA

PAGE 20 OF 88

3.2 Component Designer

The real work (and benefit) to XP Embedded is in creating components that are not part of the

database. A Component is a combination of properties, files, registry data, custom resources,

dependencies, group memberships, DHTML and build-scripts. The Component Designer is used to

create custom components, such as a component based on the .pmq file obtained by running the

Target Analyzer on a particular target. These components are stored in Source Level Definition files or

SLDs (a.k.a slides) which are XML files that specify the resource files and properties of the

component. After you add a custom component to a .sld file, you can modify, test, release, and

update it.

In general there are four types of components that are created:

Device Driver Component – Most hardware devices come with Information (.inf) files that

instruct the Windows Installer how and where to install the device driver. Component Designer can

import most INF data to create a component.

Macro/Platform Component – Macro/Platform components consist of multiple components

and other macro components. They save time in creating a configuration and importing the data

into Target Designer. Target Analyzer Data (PMQ) files can also be imported to create a platform

component.

Application Component – Application components are the best way to get an application

installed directly into the image. Application can be third party or your own custom application.

GWYNETH SALDANHA

PAGE 21 OF 88

Third party applications usually require some extra work in finding the support resources needed to

run. This is covered in the Chapter Four

Primitive Component – A Component that has a single binary file. They are the smallest

component elements and usually have a low visibility setting. A DLL or library that is used by

multiple applications should be created as a separate primitive component. For e.g. OLE32 and

MSVCRT40 are primitives.

Figure 4: The Component Designer

GWYNETH SALDANHA

PAGE 22 OF 88

3.3 Component Management Interface

The CMI, or Component Management Interface, is a part of the tools that is usually never seen

or heard from. Windows XP Embedded uses a SQL-based database to hold all components. This

database can be a local or remote Microsoft SQL Server installation, or a local Microsoft Data

Engine (MSDE) installation –which is provided on the Windows XP Embedded CD.

In order to seamlessly provide access to both local and remote databases from one set of tools,

as well as provide for switching databases on the fly, a database communications layer is required in

the overall architecture. This layer is the Component Management Interface. Its primary purpose is

to provide a standard interface between the Windows XP Embedded tools (Target Designer,

Component Designer, and Component Database Manager) and the component database, wherever

it resides (local or remote, SQL Server or MSDE). If it's related to anything in the component

database, the CMI will be involved.

Since all the tools rely on an active database connection to do any useful work, the first thing any

of the tools do is to ask the CMI to provide an active database connection. If no database

connection is possible, the CMI returns a failure and the tool reports an error. In short, there is no

way to do any meaningful work in Windows XP Embedded without a database connection.

The CMI also provides for some level of asynchronous database access, which is highly likely

with a remote SQL Server database and multiple clients. All operations involving database changes

are fully transacted in SQL, providing rollback capabilities in the event of a failed operation. The

CMI also distinguishes between Read-Only and Exclusive access modes. If any tool wants to delete

information from the database (currently only Component Database Manager), it first needs

Exclusive Access, and it can't get that if any tool has the database open. On the other hand, if Exclusive

Access is granted, no other tool can gain access to the database until Exclusive Access is released.

GWYNETH SALDANHA

PAGE 23 OF 88

3.4 Component Database Manager

Components on their own aren't worth very much. They're small XML files that contain a set of

data describing a concrete unit of functionality. The Component Database Manager does a number

of things for us, but its prime purpose is to take component definitions in the form of SLD files and

put them in a component database that all the Windows XP Embedded tools can read.

GWYNETH SALDANHA

PAGE 24 OF 88

Figure 5: The Component Database Manager

The server listed in Component Database Manager is the server that all Windows XP Embedded

tools will use. Its value is stored in the registry on the machine Component Database Manager is

running on. You can have multiple databases across your network, and use Component Database

Manager to switch between themix.

The Component Database Manager uses the Component Management Interface to add new

components to the database and display the current components in the database. Once a component

has been created, its .sld file must be imported to the component database using the Component

Database Manager. Entities may be deleted and the resource file repositories managed from the

Component Database Manager.

3.5 Target designer

The Target Designer is used to create configurations, which are stored in .slx files, and build XP

Embedded images from those configurations.

GWYNETH SALDANHA

PAGE 25 OF 88

Figure 6: The Target Designer

There are three panes in the Target Designer; on the left is the Component Browser, in the

middle is the Configuration Editor and to the right is the Details Panex. Components that are

available in the Component Database are displayed in the Component Browser and are added to the

configuration by dragging them into the Configuration Editor pane.

There are several default Design Templates available to form the base of XP Embedded

configurations: Windows-based Terminal Professional, Information Appliance, Basic Set Top Box,

Digital Set Top Box, Advanced Set Top Box, Kiosk/Gaming Console, Home Gateway, Retail Point

GWYNETH SALDANHA

PAGE 26 OF 88

of Sale Terminal, and Network Attached Storage. Each component has a visibility level property,

which is a value from 100 to 10,000. The Target Designer also has a visibility level and will only

display a component in the browser if the component’s visibility level is higher than the Target

Designer’s visibility level. The default visibility level for components is 1000, macro components are

usually set to 2000, and “hidden” components usually have a visibility level of 500. To view all

available components in the Target Designer, set its visibility level to 100 from Tools > Options.

Figure 7: Set the component visibility level in Target Designer's 'Tools > Options'

3.6 Embedded Enabling Features

Embedded enabling features are included to help optimize the operating system for embedded

devices. Some of the features are:

GWYNETH SALDANHA

PAGE 27 OF 88

Enhanced Write Filter (EWF): This protects the contents of disk volumes by redirecting write

operations to a different storage location called ‘overlay’ for e.g. RAM or a disk partition.

Hibernate Once Resume Many (HORM): Here the state of the machine is saved by copying

all the contents of RAM to the drive and thus enables the device to achieve an instant on experience.

Remote Boot: This service uses the Pre-boot Execution Environment (PXE) protocol to boot

a device over a network. The PXE communicates with the server and retrieves a boot image over a

network.

Update Services: The System Management Server (SMS), Windows System Update Services

(SUS), and Device Update Agent (DUA) all address servicing the system when deployed in the field.

These three servicing solution address incremental updates and can be handled remotely without

having a service technician attend each station.

System Deployment Image (SDI): Windows XP Embedded includes the SDI (System

Deployment Image) feature, which enables you to manage your run-time images. SDI tools are used

to facilitate the preparation and maintenance of run-time images.

GWYNETH SALDANHA

PAGE 28 OF 88

Figure 8: Embedded Enabling Features

Feature Pack 2007 extends Windows XP Embedded providing developers with new embedded

enabling features, re-optimized OS components, enhanced servicing options and powerful

embedded-specific development toolsxi. Additionally, the Feature Pack 2007 enables additional

embedded-enabling features such as:

File Based Write Filter: Unlike EWF where the complete disk partition was protected the File

Based Write Filter (FBWF) allows developers to selectively protect individual files and folder

GWYNETH SALDANHA

PAGE 29 OF 88

USB Support: Native support in the operating system for booting USB mass storage devices

(including USB Flash) on systems with USB 2.0 Boot capability. With USB Boot, a device maker can

achieve improved diagnostic and servicing. By storing a diagnostics image on a USB Flash key, a

field technician can boot a deployed device in the field for maintenance or troubleshooting.

3.7 The Command Line Tool

With the release of Feature Pack 2007, the Windows Embedded Studio tool suite now includes a

command line script interface tool designed to automate the end-to-end build processes, increasing

developer productivity.

The Windows XP Embedded Command-Line Tool (XPECMD) enables you to perform many

of the same tasks as in the GUI tools, including creating and opening runtime configurations,

adding, modifying and removing component instances, resolving dependencies, building runtimes,

and importing components into the database.

For e.g.: Creating a new configuration can be done by using the initcfg command.

xpecmd> initcfg cfg

This command creates a new configuration object and automatically initializes and activates it.

You can use the new configuration once it has been activated.

You can also create a new runtime configuration using the new command.

xpecmd> new cfg Configuration

GWYNETH SALDANHA

PAGE 30 OF 88

3.8 Summary

The XP Embedded development process is a combination of tools that help perform hardware

analysis, the creation of custom components and actually building the XP Embedded images. In this

chapter we covered the core tools and concepts used to build Windows XP Embedded images. In

the next chapter we explain the actual soup to nuts process of building an XP image and deploying

it.

GWYNETH SALDANHA

PAGE 31 OF 88

CHAPTER 4 :

XP EMBEDDED IMAGE

DEVELOPMENT CYCLE

There are several deployment options available to developers who wish to create Windows XP

Embedded images. This chapter describes how to build images with the development environment

that was used to demonstrate this thesis.

4.1 Creating an XP Embedded Image

The development environment (Boadicea) was a desktop machine with Windows XP

Professional and Windows Embedded Studio SP 2 Feature Pack 2007 installed. The target device

(Druidess) was a HP Laptop with an existing Windows XP Professional installation.

4.1.1 Analyzing the Target Computer

Since the Target device already had Windows XP running the Win32 Target Analyzer Probe

TAP.EXE was used to generate the .pmq file. The PMQ file contains information about the target’s

GWYNETH SALDANHA

PAGE 32 OF 88

hardware. Once the inventory list is captured the next step is either to create a component with the

Component Designer or create a Configuration in Target Designer.

One of the main reasons to import the PMQ file into Component Designer is to allow you to

remove hardware that may be causing footprint issuesxii. Creating a SLD makes it easier to delete or

disable dependencies; then rebuild and retest the component. Removing hardware from the SLD

reduces the footprint of the eventual runtime.

Figure 9: Partial Output when running TAP.EXE on Target Device

4.1.2 Create a Component for the Target Device

The target’s PMQ file was imported into the Component Designer to create a Platform/Macro

Component; this may take a few minutes. The ‘Selector Prototype Component’ was added as the

Prototype. This allows you to override the component dependencies in the Target Analyzer. This

newly created .SLD file was saved and imported into the Component Database Manage thus adding

GWYNETH SALDANHA

PAGE 33 OF 88

the devices component to the database. This customized component will now be available for

inclusion in a configuration.

Figure 10: Importing the Target PMQ file as a Component

GWYNETH SALDANHA

PAGE 34 OF 88

Figure 11: Adding the Selector Prototype Component as the Prototype

4.1.3 Creating a New Configuration in Target Designer

With the devices component created the runtime image can now be built. A new configuration

was created in the Target Designer. The component browser lists all the available components. The

component we created and other required components were dragged to the configuration editor

pane. Additional components can be added to the configuration and if a specific component doesn’t

appear in the component browser list, try lowering the visibility level setting.

GWYNETH SALDANHA

PAGE 35 OF 88

4.1.4 Update Configuration Settings

There are a number of components that have individual settings that need to be selected

manually. The Target Designer does not have a one-stop pane that has the entire settings list so you

must go through each of the components to check the settings individually. For example, with the

Explorer Shell we can select what the end user is going to see by modifying the settings under the

User Interface Core Component and check/uncheck the boxes to ‘Show Control Panel on Start

Menu’, ‘Show My Computer on Start Menu.’, etc.

The Configuration Settings control how the image will boot and behave when running on the

target. These settings need to be addressed now, before the image is built.

Once all the settings for the configuration and components are entered it’s time to go ahead and

run a dependency check.

4.1.5 Check Dependencies

Once the components have been added, removed and/or disabled from a configuration, it is

time to run a check of the configuration to verify that all of the components have their individual

dependency requirements satisfied. Certain components require the presence of other components

to function properly.

Figure 12: Resolve Dependencies by clicking on the Task names

GWYNETH SALDANHA

PAGE 36 OF 88

A missing piece could cause the image or device to not work properly. For e.g. you cannot add

‘Monitor’ without adding ‘VGA’ to the configuration and have the image function. A dependency

check will find these discrepancies.

Since 12,000 components and their dependencies make locating and including components a

challenge. The ‘Auto-Resolve Dependencies’ was selected to automatically resolve dependencies

when performing a dependency check.

4.1.6 Build the Run-Time Image

After resolving any dependencies issues for the configuration we are now ready to go ahead and

select ‘Build’ and build the image. Images can be built as either a Release Image or a Debug Image.

The debug image outputs debug information over a serial connection allowing developers to

troubleshoot. Images are also categorized as either for deployment or test. To build for deployment

you need to have a valid Product Key from Microsoft. Test builds have a live of 120 days.

GWYNETH SALDANHA

PAGE 37 OF 88

Figure 13: Building an Image

When the build completes an estimated size of the image is provided. The specified destination

directory will contain the final image, which is similar to a standard XP Professional file structure.

After the successful build the configuration was saved and exited. The final image is now ready to be

downloaded to a boot media.

4.1.7 Deploy the Run-Time Image

To deploy the XP Embedded image you basically have to copy the files from the image folder

on your development device to your target device’s boot media. XP Embedded provides a variety of

bootable media. Some of the bootable media include IDE hard drives, Compact flash, CD-ROM,

Remote Network Boot, etc.

GWYNETH SALDANHA

PAGE 38 OF 88

The main issue is how to physically get the image (with its long file names) from the host

machine to the target. Some machines are limited in their I/O support so transfer becomes a bit

more of a challenge. Devices like Compact flash and PCMCIA flash are easy to actually transfer but

have tricky setup issues. The deployment method you choose will be dictated by the media and I/O

support of your target machine.

When the XP Embedded runtime is booted for the first time a set of processes called the First

Boot Agent is run. When FBA has finished processing everything, it cleans itself up and reboots the

machine. Subsequent boots of the Windows XP Embedded runtime will not execute the FBA

instructions again. FBA is a one-time operation, and usually happens on a golden master device

before replication.

For this thesis two deployment methods were explored a USB boot and a XP Embedded

demonstration using Microsoft’s Virtual PC.

4.2 Booting from USB Flash

4.2.1 Overview

Booting from a USB disk has long been sought by the XP Embedded community, and it is now

a new out-of-the box boot feature in XP Embedded SP2 Feature Pack 2007. The ability to boot

GWYNETH SALDANHA

PAGE 39 OF 88

from small, inexpensive, and readily available flash disks opens up new possibilities to boot XP

Embedded faster, deploy images more simply, and provide new, simple means to support systems in

the fieldxiii.

Even though the support is available in XP Embedded, this is only part of the solution. The

target hardware, specifically the BIOS, plays a big role whether you can boot from USB 2.0. The

target system must support USB 2.0 and the ability to boot USB 2.0 devices.

Like any other OS, XP Embedded is constantly writing data (e.g. registry data) to the disk. USB

flash disks have the same flash life issues as CF devices. 200,000 erase cycles is a typical life-time for

a flash device. Typically the Enhanced Write Filter (EWF) or the File Based Write Filter (FBWF) is

implemented to protect the flash from constant writes by re-directing the writes to a RAM overlay.

Let’s walk though the steps taken to implement this feature.

4.2.2 Format USB Media

Format the USB media using the ufdprep.exe tool found in the utilities folder under Windows

XP Embedded Studio Tools. You can use ufdprep /? for more information on the utility. To use

USB Boot in combination with Enhanced Write Filter (EWF), leave room on the USB flash disk for

EWF to create the partition for the EWFxiv.

GWYNETH SALDANHA

PAGE 40 OF 88

Figure 14: Format the USB Media with ufdprep.exe

4.2.3 Add USB Boot 2.0 Component

After generating, transferring and importing the .pmq file from the target device into the Target

Designer we need to add the USB Boot 2.0 component to the run-time image. Resolve Component

Dependency procedure until all dependencies are resolved.

Figure 15: Add the USB Boot 2.0 Component

GWYNETH SALDANHA

PAGE 41 OF 88

4.2.4 Build Target Image and Transfer to USB Media

Finally, build the target image and then transfer it to the USB Media (a simple copy-paste in

Windows Explorer).

Figure 16: Build the USB bootable image

4.2.5 Boot with the USB Media

Set the BIOS in the target to boot USB 2.0, insert the USB flash disk into the target and let the

system boot from the flash disk. The system will run through the First Boot Agent and then XP

Embedded build will boot.

GWYNETH SALDANHA

PAGE 42 OF 88

4.3 Demonstrating XP Embedded with Virtual PC

In a presentation demonstrating Window XP Embedded's power and usability, it's common to

only have a single machine available. You can use two partitions; however, you must then reboot

your machine to switch from Windows XP Professional to Windows XP Embedded. In a

presentation, this is not the ideal scenario. With Microsoft Virtual PC one can host a Windows XP

Embedded image on a Windows XP Professional machine.

4.3.1 Setting up the Virtual Machine

 Create a new virtual machine with 300 MB HDD space, 128 MB RAM and

Windows XP as the OS for the VPC machine. (XP and XPe have the same

binary files). Boot the virtual machine with use the Windows PE CD (CD 1 of

the Windows Embedded tools). Now we need to partition the disk so run

diskpart.exe to partition the disk and type the following commands to create

a partition.

SELECT DISK 0

CLEAN

CREATE PARTITION PRIMARY

 Ensure the partition is active with the following command.

SELECT PARTITION 1

ACTIVE

 Once that’s done type Exit twice to exit Diskpart.exe and reboot Windows PE.

After rebooting format the partition with FORMAT C: /FS:NTFS /q.

GWYNETH SALDANHA

PAGE 43 OF 88

4.3.2 Capturing the Hardware Information

Run Target Analyzer tool (tap.exe) to automatically capture the information about the virtual

machine’s hardware. Tap.exe (Target Analyzer 32 bit version) is available on the Windows PE CD in

the \XPe folder. To save the results of tap.exe in the host machine, create a mapped drive from the

host machine inside VPC.

4.3.3 Building and Deploying the Image

Now that we have the devices.pmq we follow the regular process to build an image. Import the

PMQ file into the Component Designer. Select the Prototype Component. Save the SLD. Open up

the Target Analyzer and add in the components needed. Check the dependencies and then build the

image.

We must now copy the XP Embedded image from our host operating system to the Virtual PC,

using the networking of VPC in the same way we created the TAP output in the shared folder.

4.3.4 Running XP Embedded

Detach the CD and the virtual machine will boot the Windows XP Embedded image. The first

boot will go through the First Boot Agent (FBA) process, which builds the machine registry,

enumerates the device drivers, registers all components, and so on. At the end of FBA, the machine

will automatically reboot. When the machine restarts, it will be running Windows XP Embedded

GWYNETH SALDANHA

PAGE 44 OF 88

4.4 Summary

This chapter presented the process to create and deploy the Windows XP Embedded Images

that were explored during this thesis research using the XP Embedded Development Studio tools.

The next chapter will explain the customization, Servicing and Security Issues with XP Embedded.

GWYNETH SALDANHA

PAGE 45 OF 88

CHAPTER 5 :

COMPONENTS AND

COMPONENTIZATION

Why should you even use Component Designer? I mean, if Windows XP Embedded can run

anything that will run on Windows XP, then why don't I just create an install program, and install it?

That can work—as long as your run-time image contains all the support DLLs necessary to run the

installer, and you're running on a Read-Write media, and you've got enough media space to handle

the temporary files, and you've got enough memory and a big enough pagefile to handle the process.

Since most embedded devices can't meet all these requirements, we need another way to put that

functionality into a runtime. That's where components come in.

Components are easily defined: They are the smallest individually selectable pieces of

functionality that can be included or excluded from an embedded run-time image, and are

comprised of files, registry entries, and dependency information. In short, a component is a block of

functionality. Windows XP Embedded comes with a database full of components—they're the most

basic element in your configuration. The process of turning your application into a component is

called componentization.

GWYNETH SALDANHA

PAGE 46 OF 88

To exemplify componentization lets first look at the process to create a simple component for

the Microsoft Paint application.

5.1 Component Development

Open up a new SLD file in the Component Developer and right click component to add a new

component. Name the component ‘MSPaint’. Under Group Memberships, right-click and add new

group membership under the category: Category>Software>Applications>Other. Under Files

right-click to add a new file. Browse to the mspaint.exe program in the system32 folder. Change the

other details as shown in the figure below.

GWYNETH SALDANHA

PAGE 47 OF 88

Figure 17: File Resource Details

MS Paint needs two other resources to run successfully so let’s add them. Under ‘Component or

Group Dependency’ add a new component dependency from the database: Software>

System>System Services> Base> Primitive: OLE32, and click OK. Next, add the second

component dependency from Software> System>System Services>Application

Support>Microsoft Foundation Class Libraries (MFC), and click OK.

Now let’s create a new repository. Create a new folder on the HDD and call it ‘app’ and copy

the mspaint.exe program into the folder. In the Component Developer, under the Repositories

branch as a new repository and in the details pane fill in a name for the repository and then set the

Source Path for the repository to the ‘app’ folder you created on the HDD. Save the SLD file. Our

component is now ready to be added to any configuration.

5.2 Advanced Component Development

Installation programs come in all shapes and sizes, from a simple xcopy, IExpress, through GUI

installers that require registration information from the user and may ship on multiple

CDs/DVDs—installation programs may install database engines or operating system services,

device drivers or support DLLs, and can make changes to the operating systems registry or INI

files—in some cases the installed files may be installed to multiple folders on your PC, Program Files

for the core application, "\Windows\System32" for device drivers, or other installer dependent

GWYNETH SALDANHA

PAGE 48 OF 88

folders—determining what should be included into your Windows XP Embedded component

would at first appear to be a non-trivial job.

Unfortunately, there are not any tools that can automate the process of building a Windows XP

Embedded component for applications—there is some detective work that needs to take place. One

of the tricks to componentizing an application or driver is simulating dynamic setup process data.

Most installers do three things:

 Copy files from a flat to a final location.

 Create registry keys based on install options, user input, or environment.

 Register COM objects and DLLs.

In order for Windows XP Embedded to accomplish these, we need to know a few things about

the application we’re trying to install:

 The files in the application.

 The registry keys used by the application.

 Any files not part of the application that are needed to run properly (such as

runtime libraries, existing system services, and so on.)

 Any DLLs that need to be registered.

 Anything that requires user input or analysis of the run-time environment

5.2.1 Tools Used on the Development PC

The behavior of the application's installation program cannot be changed, but the operating

system can be monitored to figure out what changed as a result of installing an application. There

GWYNETH SALDANHA

PAGE 49 OF 88

are a number of tools available that can assist with this process. Since some installation programs

require a reboot during the installation process, ideally a tool should be used that can monitor

changes in the PC's file system and registry across reboots. Applications such as Inctrl5 (ZDNet),

SysDiff (Microsoft), and others 'snapshot' the file system and registry before installing an application,

then snapshot the file system and registry after the installation and provide a report of the

differences—this can assist with determining which files should be included in the component.

Don’t forget that applications and services already running when the application installed may also

make changes to the file system and registry.

Here's a list of tools that can be use on the development PC to determine which files/registry

entries should be included in a custom component

 InCtrl5—used to snapshot the file system and registry and provide a list of

differences (ZDNet)

 Dumpbin—used to determine which DLLs are used by an application/DLL

(Visual Studio .NET)

 Depends—can also be used to determine which DLLs (and APIs) are used by

an application

 RegMon—dynamically monitor changes to the registry (NT System Internals)

 FileMon—dynamically monitor the file system (NT System Internals)

5.2.2 Tools Used on the Target Device

Using the above tools to determine which files and registry entries are needed is only one piece

of the puzzle. Once the XP Embedded image has been built, the application will also need to be

GWYNETH SALDANHA

PAGE 50 OF 88

tested to ensure it behaves as expected—it's possible the application may be dynamically loading

DLLs or creating instances of COM objects, but this can't be caught using Dumpbin or Depends.

Therefore some debug tools on the target device are needed. Here's a list of tools that can be used

on the target device (remember to remove them before deploying the final image):

 RegMon—dynamically monitor changes to the registry (NT System Internals)

 FileMon—dynamically monitor the file system (NT System Internals)

5.3 Component Support from Third-Party Vendors

Componentization is quite a task for larger applications. Even after building the image there

needs to be a testing phase to ensure that you got all the little bits and aren’t missing anything. Life

would be a lot easier if you could find a pre-developed SLD from the application developer along

with the application so that you have a stable component. There are a few third-party vendors

providing software drivers or applications for XP Embedded.

Computer Associates’ eTrust Antivirus for Microsoft Windows XP Embedded is the industry's

first virus protection solution designed specifically for XP Embeddedxv.

Sygate’s (now Symantec) Security Agent for Windows XP Embedded offers enhanced virus

protection and anti-application hijacking, a dramatically reduced single-agent footprint, seamless

integration with Microsoft's Target Designer and the availability of a run-time versionxvi.

GWYNETH SALDANHA

PAGE 51 OF 88

Then there’s Trend Micro’s Network VirusWall 300 which integrates with Windows XP

Embedded solutions to protect a spectrum of devices such as ATMs, Retail Point-of-Sale Terminals,

Thin Clients and other network-connected systems from network viruses and internet wormsxvii.

The Windows Embedded Partner program lists more partners, products and services for XP

Embedded at: http://www.mswep.com/. Besides vendors providing componentized versions of

their applications there is the online XPe community which makes available pre-developed SLD files

and components for hardware device drivers and software applications. The binary files have to be

downloaded separately from the individual vendors. Some websites are:

http://www.seanliming.com/

http://blogs.msdn.com/embedded/

http://www.xpefiles.com/

5.4 Summary

Components are at the center of XP Embedded, and at some point you will probably have to

build a custom component for your application or device drivers. Anything that will be in the final

image should be placed in a Component.

XP Embedded’s import features have shortened the development time needed to create

components. What used to take days now only takes a few hours. There is still some analysis that

needs to be performed, but there are various third party tools that make it easier to collect the

GWYNETH SALDANHA

PAGE 52 OF 88

necessary resource information. And of course there are always companies and individuals that post

XP Embedded components on the internet.

GWYNETH SALDANHA

PAGE 53 OF 88

CHAPTER 6 :

MANAGING AND SERVICING

RUNTIME IMAGES

6.1 Updates Overview

Windows updates are classified according to their purpose. The following table reviews

Windows update terminology for Windows XP Embedded.

Term Description

Update A security bulletin that is issued to a wide audience.

Hotfix A fix that is designed to resolve a specific customer issue.

Hotfixes are not released to the public.

QFE (Quick Fix Engineering update) A fix that is not related to security and that is issued to a

wide audience.

SP1 XPE QFE Any type of fix that is not associated with a major software

release.

Table 1: Update Terminologyxviii

GWYNETH SALDANHA

PAGE 54 OF 88

Updates for Windows XP Embedded are further classified by how they are deployed. The

following table describes these types of updates.

Type Description

Desktop update An update that is applied, in part or as a whole, to an embedded device.

Desktop updates are updates that are released for Microsoft® Windows®

XP Professional. A servicing strategy that is based on desktop updates is a

strategy of incremental updates to the run-time image.

Database update An update that is applied to the component database from which the

OEM takes Windows components to create a run-time image. A servicing

strategy that is based on database updates requires that a run-time image be

rebuilt or "reimaged," and then redeployed to apply the update to the

embedded device.

Table 2: Update Type based on Deployment Method

6.2 Database Updates

A Windows XP Embedded database update is run on the development machine so that the

Windows Embedded Studio component database is updated with the new or changed binary files. A

database update ensures that all future run-time images that are created on the development

computer include the update by default.

Updates that are made to the database cannot be uninstalled from a run-time image that was

created to include them.

GWYNETH SALDANHA

PAGE 55 OF 88

Updates should always be tested for the specific device to which they will be deployed before

deployment is made, regardless of whether the update is implemented in a reimaged run-time image

or by deployment directly to the device.

Database updates are made only for critical and important updates.

6.2.1 Creating a Database Update

To deploy a database update, the run-time image must be re-built after the update is made to the

database. Installing a reimaged run-time image is the only way to apply updates to devices that boot

from read-only media. The basic process that device developers use to re-image a run-time image is:

 In Target Designer, open the .slx file for the run-time image configuration to be

updated.

 On the Tools menu, select Update to update the configuration with the

changed component.

 Complete a dependency check and build a new run-time image that includes the

new or changed component.

Even if the run-time image will not be reimaged and redeployed to distribute the update, the

component database should be updated with the update to ensure that run-time images that are

generated in the future use the correct components.

GWYNETH SALDANHA

PAGE 56 OF 88

6.2.2 Advantages of a Database Update

There are some practical advantages to distributing an update by re-imaging. For example, you

can more effectively test a reimaged run-time image for missing dependencies and other problems.

It can also be more practical to re-image when you have a number of updates to apply and want to

avoid the time involved in scripting and administering a series of incremental updates.

6.2.3 Issues with Database Updates

The technique of re-imaging to include an update limits the means of deployment that are

practical to use to install the update on devices. Servicing solutions are not generally intended to be

used to deploy entire run-time images and the mass deployment of a run-time image over a network

demands a lot of resources, even under the best of circumstances. Distributing an update in a

reimaged run-time image also means that the boot media must be replaced or reformatted.

6.3 Desktop Updates

Desktop updates are updates that are released by Microsoft for Windows XP Professional. Since

XP Embedded is a componentized version of the Windows XP, these Windows updates can run on

Windows XP Embedded run-time images that include the required dependencies.

Desktop updates are used to apply incremental updates to a run-time image. Combined with

good testing, the incremental application of desktop updates reduces the size of the update package

and the cost of deploying them.

GWYNETH SALDANHA

PAGE 57 OF 88

6.4 Servicing Embedded Devices

Device servicing is the deployment of new and changed binaries to embedded devices. A

Windows XP Embedded-based device can by serviced by:

 Re-imaging: Updating the Windows Embedded Studio component database

with the new and changed binaries, and then rebuilding and redeploying the run-

time image.

 Making incremental updates: Updating the run-time image on the device by

deploying the new and changed binaries.

Servicing plays a critical role in any device security strategy but is not the sole component of a

security strategy. The design process should include a means for run-time management and

servicing. Servicing solutions include mechanisms for patching and updating embedded devices, as

well as mechanisms for deploying reimaged XP Embedded images.

The servicing solutions that Windows XP Embedded supports for making incremental updates

to a run-time image include:

 Microsoft Windows XP Embedded Device Update Agent (DUA)

 Microsoft Software Update Services (SUS)

 Microsoft Systems Management Server (SMS)

GWYNETH SALDANHA

PAGE 58 OF 88

When a run-time image is deployed on a device, the run-time image can be managed remotely

and serviced with security patches and Quick Fix Engineering (QFE) updates. Before you can use

any of the automated managing and servicing features, they must be added to your run-time

The following table provides a quick reference and comparison of the Windows XP Embedded

servicing optionsxix.

Solution Best suited to...

Device Update Agent (DUA) Any networked device. Ideal for small-footprint devices or

smaller environments.

Software Update Services (SUS) Any device on a closed network. Ideal for medium to large

enterprise environments.

Systems Management Server

(SMS)

Well-suited to RPOS, WBT, and ATM devices. Ideal for

enterprise environments that require management capabilities.

Table 3: Servicing Options

You can use one of the supported servicing solutions (DUA, SMS, or SUS) or you can create

your own servicing solution. Below is an overview of various solutions and a detailed look at the

Device Update Agent.

6.4.1 Recovery CD

In some severe circumstances, such as when a run-time image is corrupted, it may be necessary

to start your device from a bootable CD. To create a recovery CD, you can package Microsoft

Windows Pre-Installation Environment (Windows PE), a System Deployment Image (SDI) file, and

SDI tools. With this recovery CD, you can use Windows PE to boot the device, and then restore the

image on your device by installing an image from an SDI file. Once the recovery image is installed,

GWYNETH SALDANHA

PAGE 59 OF 88

you can reboot the device from the recovery image. This recovery process does not repair individual

files; rather, it installs the complete image as it was on the device when it left the factory. All existing

files, data, and settings on the device, as well as any changes made since it left the factory, are

replaced by the image.

With a few modifications to this process, you can use Windows PE and SDI to deploy

Windows XP Embedded to a device or upgrade an existing device in the field. The recovery CD is

not a method for deploying or upgrading individual components, settings, or QFEs.

6.4.2 Run-Time Image Replacement

You can service a run-time image by replacing the entire run-time image with an updated

version. The updated run-time image includes all of the fixes, additions, and updates that are

required to service the run-time image. For some types of devices, such as bootable CD-ROMs or

network-hosted images, this is the only available method of servicing a run-time image.

In Target Designer, add Quality Fix Engineering (QFE) updates, component updates, or other

additions to your configuration, and then rebuild and test the configuration. Once the run-time

image is verified, you can distribute it to your devices.

One of the benefits of completely replacing a run-time image is that all dependencies are met,

updates are applied, and other than updating the device with the new run-time image, there are no

additional steps.

GWYNETH SALDANHA

PAGE 60 OF 88

6.4.3 Remote Management

In some cases, you cannot gain physical access to the device once it has been deployed.

Windows XP provides a comprehensive set of features to help administer a target device, including

Remote Desktop (Terminal Services) and Telnet, which helps to manage your system from a remote

location. Other services and features include File Transfer Protocol (FTP), Windows Management

Instrumentation (WMI), and Simple Network Management Protocol (SNMP)xx. You can also create

a Windows-based Terminal (WBT) that you can manage remotely. A remotely managed system must

recover automatically from an error. You can use message interception to acknowledge system

errors without requiring user interaction.

6.4.4 Device Update Agent

Device Update Agent (DUA) is a lightweight management solution for small footprint devices.

It enables organizations to update a run-time image remotely. DUA is a service that runs on your

run-time image and performs administrative tasks, such as copying files, creating registry. The DUA

is discussed in detail later in this chapter.

6.4.5 Software Update Services (SUS)

Software Update Services (SUS) allows you to configure your own intranet update server that

downloads Windows Updates from Microsoft. Implementing SUS servicing requires a separate SUS

intranet server that manages the updates. This SUS intranet server is set up by an administrator to

poll the public Microsoft Windows Update web site for updates for Windows XP Professional

systems. If there are new updates available, these updates are downloaded to the SUS intranet server.

GWYNETH SALDANHA

PAGE 61 OF 88

Before these updates are applied to the XP Embedded devices, they must be approved by an

administrator.

Because the updates are specific to Windows XP Professional or Home editions, an

administrator must inspect the update, verify that it applied to the Windows XP Embedded device,

and test the update. After the update has been successfully tested, it can be made available to the

Windows XP Embedded clientsxxi.

Although it is possible to configure client devices to directly download updates from the public

Microsoft Windows Update web site, doing so may potentially corrupt the device. Because Windows

Updates are specific to Windows XP Pro or Home editions, some of the updates may not apply to

Windows XP Embedded.

The following illustration shows the overall process flow for delivering and approving updates

using SUS.

GWYNETH SALDANHA

PAGE 62 OF 88

Figure 18: SUS Overall Process

The basic process flow is detailed in the following list:

 The SUS intranet server polls the public Microsoft Windows Update site for

Windows XP Professional updates.

 The SUS intranet server downloads any new updates.

 After new updates have been downloaded, an administrator must verify that each

update applies to the Windows XP Embedded device. The administrator must

then test each update on a sample device.

GWYNETH SALDANHA

PAGE 63 OF 88

 After the update has been verified and tested, it is made available on the SUS

intranet server to be downloaded by the Windows XP Embedded clients.

 At the next scheduled polling time, the Windows XP Embedded clients

download the updates from the internal SUS server.

6.4.6 Systems Management Server (SMS)

You can use Microsoft’s Systems Management Server (SMS) 2003 to manage networked

Windows XP Embedded-based devices alongside Windows desktop, Windows server, and other

Windows Mobile systems. SMS supplies an administration console that can be used on a Windows

Server 2003 system to remotely perform management functions.

Client and server components for SMS are not included in the Windows Embedded Studio

component database and must be separately obtained. The SMS Advanced Client component runs

on the Window XP Embedded device and reports system status to the server. Windows XP

Embedded requires the SMS 2003 Advanced Client; earlier versions of SMS are not supported.

The SMS 2003 Advanced Client must be added to the configuration in Target Designer before

the run-time image is built and deployed.

SMS provides flexible support for applying any kind of update package that the run-time image

can execute, including desktop updates, custom scripts, and application-specific executables. If the

Windows Installer Service component is included in the run-time image, you can also use SMS to

deploy Microsoft Windows Installer (MSI) packages for installation.

GWYNETH SALDANHA

PAGE 64 OF 88

6.5 Device Update Agent

The Device Update Agent (DUA) is available with XP Embedded SP1 onwards and so, unlike

the other two solutions, it’s is free. This thesis explores the DUA component.

The Device Update Agent enables you to update a run-time image remotely. DUA is a service

that runs on your run-time image and performs administrative tasks, such as copying files, creating

registry keys, or executing processes. DUA polls a specific remote or local path for a script file.

When this script file is found, the script immediately runs.

Device Update Agent includes a script compiler, dusc.exe. This compiler is used to compile

script files to a program that the DUA service can execute.

In some cases, you cannot gain physical access to your device after it has been deployed. You

can place commands in the DUA script, run the scripts through the script compiler, and then place

the resulting file into a folder that is monitored by the Device Update Agent service. In this manner,

you can send commands remotely to your device.

The DUA uses simple command sequences that are pulled from the file. The registry is

configured with the name of the folder from which the Device Update Agent gets the command file.

You can also manually copy the command file to the folder that is monitored by the Device Update

Agent service. Typically, this file is delivered to the DUA over a network or on physical media. If the

GWYNETH SALDANHA

PAGE 65 OF 88

device running the DUA is connected to a network, the DUA can download additional command

files.

6.5.1 Using Device Update Agent

Let’s quickly go over the steps needed to create a DUA updateable run-time image.

1. Create and Compile the Device Update Script: First create a Device Update Script (a

.DUS file) using a text editor which, when run by DUA, will create a new directory on the device,

copy files, and run the required executable for the update. A sample DUS file (helloworld.dus):

//Delay 60 seconds.

2,0,60

//Create a new DUA_Test Directory.

4,,,c:\DUA_new

//Copy helloworld files to the new directory.

7,,,c:\DUA_polling\helloworld.exe,1,C:\DUA_new\helloworld.exe,

7,,,c:\DUA_polling\msvbvm60.dll,1,C:\DUA_new\msvbvm60.dll,

//Execute HelloWorld.

15,0,0,2,C:\DUA_new\helloworld.exe,0,,0,0,0,1,0,0,,1,0,0,,0,2,C:\DUA_new,1

,0,WinSta0\Default

Create a directory to house update’s file and its dependencies. Save the helloworld.dus in that

directory. Compile the Device Update Script with: dusc helloworld.dus which will generate a

GWYNETH SALDANHA

PAGE 66 OF 88

file called commands.dup. When DUA polls local media, it deletes the DUA update file. Saving a

backup .DUP file allows you to edit and recompile the .dup file when you troubleshoot DUA.

When done your DUA polling directory should contain the script file (.dus), the compiled script

(.dus) and the required file and its dependencies (.exe and/or .dll).

2. Creating the DUA Run-Time Image: In your runtime image you will need to include the

Device Update Agent and configure the DUA component settings depending on your scenario

(HTTP Polling or Local Polling, etc). For this scenario we’ll use local polling so set Complete Path

to the Command File including Filename and Extension: to C:\DUA_Polling\helloworld.dup.

3. Deploy the DUA Run-Time Image: Build the runtime image. Copy the DUA Polling

directory created in step 1 to the root of the runtime image. Deploy the image to the target. Boot the

target. After 30 seconds the helloworld executable will run and DUA will update the runtime image.

6.5.2 Web Server Configuration

You can host DUA updates from any type of Web server, however when you configure your

Web server, it is important to note the following design considerations:

 You must include the .dup extension as a registered MIME type.

 It is strongly recommended that you use HTTPS to improve security when

transferring the update. You should create a user account on the Web server that

is used exclusively by DUA to access the update file. By using an exclusive user

GWYNETH SALDANHA

PAGE 67 OF 88

account, you can reduce the risk of tampering with, or interception of, the

update.

 The files on the server must have the appropriate access permissions.

6.5.3 Security Issues

Security is an important consideration when you deploy the Device Update Agent (DUA)

component. DUA runs under a user context with sufficient privileges to perform commands that

can damage the device run time. For this reason, it is extremely important that DUA only acquire

and process command scripts that are intended for the device by the device manufacturer.

DUA offers the following configuration settings to enhance security when it transfers and

executes command scripts. Consider the following security features and issues when you use the

Device Update Agent (DUA):

 Poll locations: DUA can be configured to poll local or remote command paths.

In either case, ensure that poll locations cannot be compromised. Command files

should come from a known source and should not be tampered with once they

are deployed to the command file path poll location.

 HTTPS transfer: Command files can be retrieved from a remote server using

HTTPS. The HTTPS option allows devices to open secure transfer sessions with

a specified update server. To configure DUA for HTTPS, select the HTTPS

option under Advanced Settings. When you use remote HTTP or HTTPS

command paths, it is important to evaluate the communication channel between

the device and the remote update server. There may be cases when HTTPS is

GWYNETH SALDANHA

PAGE 68 OF 88

not the desired method of channel security. Alternative methods can be used to

secure the channel between the device and the server, such as virtual private

network (VPN) connections.

 AutoLogon Options: DUA can be configured to authenticate with a remote

update server. If HTTPS is not specified, credentials are transferred in clear text.

To configure the AutoLogon options, expand the Security Settings section.

The following table shows the AutoLogon levels to specify when DUA should

provide credentials to the server.

Value Level Description

0 Medium Use default credentials for intranet requests only.

1 Low Use default credentials for all requests.

2 High Never use default credentials.

Table 4: AutoLogon Levels

6.6 Summary

Many developers try to use Install Shield or standard device management tools to update

applications and device drivers. Componentization is a powerful feature in XP Embedded, but

where smaller images are concerned, componentization limits the usefulness of these installation

methods for updates.

Device Update Agent with its small footprint and powerful command set is a great way to

update applications and device drivers for systems in the fields.

GWYNETH SALDANHA

PAGE 69 OF 88

CHAPTER 7 : SECURITY

CONSIDERATIONS

When you create a run-time image for an embedded device, you must consider how your device

will be used, and the security threats it is vulnerable to. It is imperative to add safety measures to

guard against network attacks, such as worms or viruses, as well as local attacks, such as

unauthorized access. Configuring security mechanisms can increase your protection against such

attacks and reduce the amount of downtime when devices are deployed in the field.

You can improve the security of your system by adding additional security components to your

run-time image. By increasing the security of your run-time image, you can prevent attacks from

hackers, viruses, or other unauthorized access. Before you deploy your run-time image, it is

important to understand the security threats that your device is vulnerable to, and to add the

appropriate security and servicing components to your configuration.

Updating your devices frequently can be expensive; however, servicing can prevent even more

expensive security compromises. We have already discussed various servicing options in the earlier

chapter. Let’s have a look at some general guidelines on how to reduce the risk of a security

compromise.

GWYNETH SALDANHA

PAGE 70 OF 88

7.1 Assessing your security risk

Some factors to consider when you assess your potential security risk are as follows:

Network environment: Devices that are connected to a network might be vulnerable to

network-based attacks, especially if these devices have unrestricted access to the Internet. You help

to mitigate this risk by connecting your devices to a corporate network, or—even better—by

restricting both incoming and outgoing Internet traffic. For more information about technologies

that can help you to mitigate the risk of exposure to network-based attacks, see "Building in

Windows Security" and "Securing the Network" later in this document.

Physical environment: Any kind of direct physical access to your devices by a malicious user—

a user who intentionally accesses a system with the intent to cause harm to the system or to use it in

an unauthorized manner—presents an obvious risk. For more information about technologies that

can help you to reduce this risk, see "Securing physical media" later in this document.

Data storage: Because embedded systems run operating systems that have a small footprint, it

is best not to store critical data on them. Instead, store critical data on a different computer, a server

that is connected to the network, or on embedded devices whose operating systems have a larger

footprint. Limit the amount of data that you store on a device running Windows XP Embedded so

that the device works normally and achieves your performance goals.

GWYNETH SALDANHA

PAGE 71 OF 88

A number of security-related factors are taken into account during the design of an embedded

operating system, including:

Footprint: The larger the footprint of the embedded operating system, the more surface area

that is vulnerable to attack. It is recommended that you choose an operating system that has the

smallest footprint possible and can still meet your needs. Devices running operating systems that

have small footprints also tend to perform faster due to the small size of the media that they use,

and the small number of files that they must process, load, and catalog.

Services and features: The more services and features that you enable on a device, the more

surface area that is vulnerable to attack. Again, the minimum set of features and functionality that

meets your needs is recommended.

Built-in security features: You can use Windows Firewall, WinLogon, Group Policy, and

Access Control Lists (ACLs) to secure Windows XP Embedded. In Windows-based systems, an

ACL is a list of access control entries that apply to an entire object, a set of the object's properties,

or an individual property of an object, and that define the access granted to one or more security

principals.

GWYNETH SALDANHA

PAGE 72 OF 88

7.2 Reduce your security risks

Some ways that you can help reduce security risks to your devices include the following:

Building small images: Devices with small footprints have less surface area exposed to attack.

Managing non-essential services: Some services are unnecessary on certain devices and

should not be built into the operating system, or should be turned off or disabled. You can also

configure services to start either automatically or manually. You can configure a service to start

manually, or to be managed by the device itself, if the service must be installed on the device but

poses potential security vulnerability.

Using Windows Firewall: The Windows Firewall is a port-based firewall service that blocks

incoming traffic to your device on specific ports. Windows XP Embedded contains a Windows

Firewall component that implements this functionality

7.3 Building in Windows Security

Security features in XP Embedded can help reduce potential data loss or compromise by either

communicating directly with a device, or by communicating with a device over the network. XP

Embedded offers two distinct logon base components, with distinct security models:

GWYNETH SALDANHA

PAGE 73 OF 88

The MinLogon component, which is unique to Windows XP Embedded, provides faster boot

times and a smaller operating system footprint at the expense of built-in security features. There are

no users on a device that use the MinLogon component: Programs run in the Local System context,

which provides all users with complete control over the operating system. Security features such as

Group Policy settings, logon rights, and ACLs are not necessary in this context, because there are no

users.

The Windows Logon (Standard) component, also referred to as the WinLogon, component

embodies the same standard logon mechanism as used in Windows XP Professional. Devices that

use WinLogon are somewhat larger and slower to boot than devices that use MinLogon; however,

WinLogon uses the full spectrum of Windows security features. Security features such as Group

Policy settings, user logon rights, and ACLs are implemented in this context.

Some additional security considerations are:

Microsoft Active Directory service: Active Directory provides a centralized, distributed

computing infrastructure with built-in security. Devices running Windows XP Embedded can

participate in an Active Directory infrastructure by including the appropriate Active Directory

components.

Group Policy: If your devices run the WinLogon service, you can manage users and security

groups by configuring Group Policy settings in XP Embedded.

Credential management APIs (Application Programming Interfaces). Windows XP and

Windows XP Embedded provide the APIs that you need to implement custom credentials

GWYNETH SALDANHA

PAGE 74 OF 88

management applications. You can use these applications to manage user credentials instead of

relying on users to type their user names and passwords.

Smart cards: Windows XP Embedded supports smart cards, including integrated Smart Card

security management and Smart Card reader device support.

7.4 Securing physical media by using Enhanced Write Filter

Protecting the physical storage media of your devices is critical to avoiding data corruption from

outside sources and computer viruses. Windows XP Embedded provides the Enhanced Write Filter

(EWF) component to help protect your physical storage media.

EWF helps to protect the contents of a volume on the physical media by redirecting all writes to

a different storage location, called an overlay. Used in this context, an overlay is similar to a

transparency overlay on an overhead projector. Any change made to the overlay affects the picture

as seen in the aggregate, but if the overlay is removed, the underlying picture remains unchanged.

EWF can protect one or more bootable and non-bootable disk volumes, including but not limited to

hard drives, flash ROMs, and CDs formatted in the El Torito format.

EWF presents a servicing challenge, however. To service the underlying operating system or

application that EWF helps to protect, you must first disable EWF. This challenge is reduced by the

availability of the EWF API, which provides programmatic control of EWF from inside your own

applications.

GWYNETH SALDANHA

PAGE 75 OF 88

7.5 Protection from Computer Viruses

A number of Microsoft partners provide antivirus functionality for Windows XP Embedded. As

mentioned earlier, Computer Associates offers a software-based solution and was first-to-market

with a Windows XP Embedded-based solution. Trend Micro followed shortly thereafter with a

hardware-based solution.

The Computer Associates’ eTrust is well componentized and so depending on the bells and

whistles you want you can get the local scanner for 5.4MB all the way up to the full product at

21MB which gives you dual engines and management by an enterprise serverxxii.

7.5.1 EWF is NOT an Anti-Virus Solution

A caveat worth mentioning, EWF as an anti-virus solution is NOT recommended.

The usual security plan is: start with SP2 FP2007 then, add the firewall, antivirus and servicing.

Some developers however skip the antivirus due to footprint requirements and decide to use EWF

as an AV solution. Recall that the Enhanced Write Filter (EWF) feature of Windows XP Embedded

makes it possible for you to write-protect your run-time images. This is not always a secure or good

idea.

GWYNETH SALDANHA

PAGE 76 OF 88

Consider a machine running EWF RAM gets infected and the device is protected only in the

sense that the system files are not permanently corrupted. In the meantime, until you reboot the

device it could be:

 Consuming resources, trying to write to disk which fills up the ram overlay and

eventually the machine runs out of memory and dies.

 Acting as a ‘zombie’ or host, infecting other machines on the net.

Now after you reboot this device, the machine is no longer infected, but more than likely it’s

going to be infected again and the same issues above apply until the next reboot.

While this is bad, this scenario could get far worse. Consider the machine is infected, you don’t

realize it yet but you need to commit some changes to disk. You commit the changes in the overlay

to disk and you’ve now permanently written infected files. Rebooting will still leave you in an

infected state. Now you either need to re-image the device or install AV software, clean the disk,

commit those changes and cross your fingers.

7.6 Summary

In this chapter we looked at various security considerations. Security should be easy to

implement. XP Embedded provides a toolset to help in building a more secure runtime image. A

security plan is crucial and security continues after deployment with device servicing as no device

design is complete without a servicing option.

GWYNETH SALDANHA

PAGE 77 OF 88

GWYNETH SALDANHA

PAGE 78 OF 88

CHAPTER 8 : COMPARISON WITH

OTHER EMBEDDED OPERATING

SYSTEMS

An important consideration when comparing Windows XP Embedded and other Embedded

Operating Systems is that XP Embedded is designed to run on a PC-based architecture. Besides XP

Embedded, the other Embedded Operating systems that fall into the PC-Based architecture are

Windows CE, Windows Embedded NT and Embedded Linux.

8.1 Windows CE

On initial inspection, Windows CE and Windows XP Embedded may seem to be similar, since

both are componentized operating systems, both expose similar programming interfaces (Win32,

MFC, ATL, and support for .NET applications), and both expose similar operating system

technologies, which include support for networking, internet browsers, media players, and so on.

Using the table below, depending on the target device you can select the right embedded OS.

GWYNETH SALDANHA

PAGE 79 OF 88

Table 5: Recommended Windows Embedded Operating System by Device Category

Devices such as mobile handhelds and basic residential gateways require a small footprint,

efficient power management, and remote management capabilities along with the ability to deliver

rich user experiences, making Windows CE .NET the recommended operating system for smart,

connected and small-footprint devices.

GWYNETH SALDANHA

PAGE 80 OF 88

Devices such as advanced set-top boxes and retail point-of-sale clients require the latest security

and reliability features, familiar and powerful Windows features, and are less restricted in terms of

footprint.

Windows XP Embedded is the recommended operating system for delivering the power of

Windows in componentized form.

8.2 Windows Embedded NT

Microsoft Windows NT Embedded was a reintroduction of a Microsoft desktop operating

system for the embedded market. Windows XP Embedded builds on the momentum of Windows

NT Embedded with improved features and better performance.

With Windows NT Embedded, you had to make a guess as to what platform components were

required in the OS image. The best way to ensure that you had the correct computer and other

driver components was to install the Windows NT OS on the target systems. Sometimes, you would

have to do this several times to gather all of the necessary information. Windows XP Embedded

simplifies this process substantially with Target Analyzer.

Creating components has greatly improved in Windows XP Embedded. Device driver

components took up to two days to develop in Windows NT Embedded. Windows NT Embedded

had a very small number of device drivers, which forced developers to create three to five device

driver components per system. The latest drivers for most hardware are already included in

GWYNETH SALDANHA

PAGE 81 OF 88

Windows XP Embedded, thus saving time on the number of device driver components that you

must create. If there is a driver that is not in the database, the INF import feature can create a new

component from scratch, which lowers component development time from days to hours.

With a dramatic number of additions, enhancements and improvements in the core OS, tools

and platform features, Windows XP Embedded offers superior performance than Windows NT

Embedded. As PC technologies continue to evolve, Windows XP Embedded will support the latest.

8.3 Embedded Linux

The power, reliability, flexibility, and scalability of Linux, combined with its support for a

multitude of microprocessor architectures, hardware devices, graphics support, and communications

protocols have established Linux as an increasingly popular software platform for a vast array of

projects and products.

Because Linux is openly and freely available in source form, many variations and configurations

of Linux and its supporting software components have evolved to meet the diverse needs of the

markets and applications to which Linux is being adapted. There are small footprint versions and

real-time enhanced versions. Despite the origins of Linux as a PC architecture operating system,

there are now ports to numerous non-x86 CPUs, with and without memory management units,

including PowerPC, ARM, MIPS, 68K, and even microcontrollers.

GWYNETH SALDANHA

PAGE 82 OF 88

Since Linux is open source there is a caveat worth mentioning. It is not public domain software.

It is licensed according to the GNU General Public License, which has a strict set of rules for use.

If you take the Linux kernel or any Linux utility and modify it, port it, or add features to it, you

must make the source available to anyone who asks for it. If you are not careful you may give up the

rights to your proprietary software unintentionally. It is best to always consult your attorney on all

open-source copyright issues.

Microsoft had published documents pitting Windows XP against Embedded Linux with the

emphasis on the technical and business inferiority of Linux. Embedded Linux distributors argue that

the document not only distorted the value of Linux, but contains inaccuracies. While it’s beyond the

scope of this thesis to verify the validity of the claims there are some points that can be commented

on about Embedded Linux that are mentioned in another document by Microsoft: ‘The Windows

Embedded Advantage-Comparing Windows Embedded with Linux’xxiii

Kernel Size – The smallest footprint configuration of XP Embedded is 5MBxxiv giving

extremely limited functionality. An average-sized configuration is about 40MBxxv. The footprint size

for LynuxWorks' BlueCat Linux is 259KB and LynxOS real-time operating system product is

254KB. An "extremely limited functionality" version of LynxOS is at about 150 KBxxvi.

Development Environment – Contrary to Microsoft’s claims Embedded Linux does indeed

have an integrated tool set. Some commercial Embedded Linux vendors sell Windows tools

supporting Embedded Linux, capitalizing on those companies reluctant to throw away their

GWYNETH SALDANHA

PAGE 83 OF 88

Windows development environment. LynuxWorks VisualLynux is a Visual Studio plug-in that

allows developers familiar with Visual Studio to program for a Linux target within a Windows.

In the Embedded Linux market, the Eclipse IDE has become very popular. Commercial

Embedded Linux vendors such as Timesys and Wind River build their own tools around the Eclipse

framework. Then there’s MetroWerks Code Warrior an embedded IDE that has been available for

Linux for a while.

Security & Reliability– Linux by design and heritage is a lot more secure than Windows and

Microsoft’s ‘Install now, Patch Later’ remedy model. Linux is also reliable and stable and has been

proven on the Internet. Windows XP on the other hand has greatly improved stability but still

doesn’t measure up to the standards set by Linux.

Linux is a versatile and cost effective operating system for embedded systems It can be

embedded in a surprisingly small system to handle simple tasks and scaled up to handle more

complex tasks. Linux can run on most microprocessors with a wide range of peripherals and has a

ready inventory of off the shelf applications. Development cycles are shortened through the use of

mature tools, open source code, substantial documentation and available support services.

The learning curve required to setup a Linux machine is no longer as steep as it used to be, but

it’s still not close to the Windows learning curve which gives Windows a big boost over Linux.

Microsoft definitely scores big points on familiarity too.

GWYNETH SALDANHA

PAGE 84 OF 88

8.4 Summary

The choice of OS from Microsoft’s Embedded Platform depends largely on the target device

and requirements. Windows CE is geared towards handhelds and XPe is geared towards PC-based

devices. Linux can be installed on a variety of devices and has a lot of pros as well as cons. A

thorough survey of needs to be done before choosing an operating system for your embedded

device since each OS has its own strengths and weaknesses.

GWYNETH SALDANHA

PAGE 85 OF 88

CHAPTER 9 :

CONCLUSION

In this thesis we looked at a soup to nuts development process to develop and deploy an XP

Embedded Image. Developing a product, of course, is more than just creating and building an

image. What goes into the image, what the image runs on, and how the product is manufactured are

all points to consider. So, we looked at creating customized components and then servicing and

security considerations. Lastly we looked at other embedded operating systems available.

In conclusion let’s have a look at the future offerings of Microsoft’s Embedded Platform.

9.1 Windows Vista for Embedded Systems

Windows Vista for Embedded Systems was released December 2006xxvii. The Windows Vista for

Embedded Systems family includes two product choices: Windows Vista Ultimate for Embedded

Systems and Windows Vista Business for Embedded Systems.

Unlike the Windows Embedded operating systems Windows Vista for Embedded Systems is not

a componentized offering and the image is not customizable by the developer. Windows Vista for

GWYNETH SALDANHA

PAGE 86 OF 88

Embedded System was designed for the desktop but is available for fixed-function or dedicated

embedded systems. So in essence you get the whole of Vista, with no specific embedded features.

Microsoft is also working on a componentized version of Vista to come out in the future but no

release date has been set.

Recently Feature Pack 2008 for XP Embedded was announced. Many Vista desktop

technologies have been back-ported to run on XP embedded so developers building embedded

devices today can take advantage of Vista technologies.

9.2 Summary

The goal of this thesis was to bring together the different options and considerations that

needed to be taken into account to customize and secure an embedded device running on XP

Embedded. Projects are full of choices and the most overlooked step in any project is taking the

time for adequate planning and documentation.

XP Embedded offers a different approach to the traditional embedded OS. Using a popular OS

software package with a large support community opens a world of possibilities and options for

development. Although Microsoft Vista for Embedded Device is now available, until the

componentization version of Vista is released, Windows XP Embedded will still be at the head of

the Embedded Platform line.

GWYNETH SALDANHA

PAGE 87 OF 88

R E F E R E N C E S

i David Ursino, Windows Embedded Family (Microsoft Corporation White Paper, September 2003), 1

ii Patric Dove, ‘Windows XP for Embedded Applications’ (Advantech Corporation White Paper) ,

http://www.automation.com/sitepages/pid2602.php

iii Windows XP Embedded Service Pack 2 Feature Pack 2007 Evaluation,

http://www.microsoft.com/downloads/details.aspx?familyid=9BDF1DEA-A37E-4D25-83DF-

AABBAA78914F&displaylang=en

iv Differences between Windows XP Embedded and Windows XP (Microsoft Corporation White Paper), 4

v Developing an Embedded Run-Time Inage from Start to Finish (MSDN Library),

http://msdn2.microsoft.com/en-us/library/ms838337.aspx

vi License and Ship Your Device (MSDN Library), http://msdn2.microsoft.com/en-us/embedded/aa731305.aspx

vii Windows XP Embedded (Embedded System Engineering Magazine),

http://www.esemagazine.com/index.php?option=com_content&task=view&id=190&Itemid=2

viii J. Fincher, Running Free: Runtime Basics (MSDN Library), http://msdn2.microsoft.com/en-

us/library/aa459165.aspx

ix J. Fincher, Component Database Manager (MSDN Library), http://msdn2.microsoft.com/en-us/library/aa459159.aspx

x J. Fincher, Target Designer, Inside and Out (MSDN Library), http://msdn2.microsoft.com/en-

us/library/aa459162.aspx

xi Windows XP Embedded Overview and Benefits (Microsoft Website),

http://www.microsoft.com/windows/embedded/eval/xpe/default.mspx

xii J. Fincher, Running Free: Runtime Basics (MSDN Library), http://msdn2.microsoft.com/en-

us/library/aa459165.aspx

xiii Sean D. Liming and John R Malin, Booting XP Embedded from USB Flash (CA, SJJ Embedded Micro

Solutions, LLC., September 2006), 4

xiv Booting XPe from USB (MSDN Library), http://msdn2.microsoft.com/en-us/library/aa940960.aspx

GWYNETH SALDANHA

PAGE 88 OF 88

xv CA Delivers Industry’s First Virus Protection Solution For Microsoft Windows XP Embedded With eTrust

Antivirus (Computer Associates Press Release), http://www3.ca.com/Press/PressRelease.aspx?CID=63405

xvi Sygate Introduces Next Version Of Sygate Security Agent For Windows XP Embedded (Sygate Press Release),

http://www.securitypronews.com/news/securitynews/spn-45-

20040913SygateIntroducesNextVersionofSygateSecurityAgentforWindowsXPEmbedded.html

xvii Trend Micro Launches Network VirusWall™ 300 (Trend Micro Press Release),

http://www.trendmicro.com/en/about/news/pr/archive/2004/pr102504.htm

xviii Supporting Windows XP Embedded-based Devices, (MSDN Library), http://msdn2.microsoft.com/en-

us/library/aa460107.aspx

xix Katherine Enos, Servicing with Windows XP Embedded with Service Pack 2 (Microsoft Corporation,

December 2004), 4

xx Remote Management (MSDN Library), http://msdn2.microsoft.com/en-us/library/ms932519.aspx

xxi SUS Overview (MSDN Library), http://msdn2.microsoft.com/en-us/library/aa940929.aspx

xxii Comprehensive Virus Protection for Microsoft Windows XP Embedded (Computer Associates Website),

http://ca.com/channel/oem/eav.htm

xxiii The Windows Embedded Advantage-Comparing Windows Embedded with Linux.,

http://www.microsoft.com/windows/embedded/comparisoncalculator/notavailable.mspx

xxiv Footprint (MSDN Library), http://msdn2.microsoft.com/en-us/library/ms912928.aspx

xxv Mike Hall, I will NEVER use Windows CE or Windows XP Embedded,

http://blogs.msdn.com/mikehall/archive/2004/12/22/331034.aspx

xxvi Embedded Linux Towers Over Windows XP Embedded,

http://www.lynuxworks.com/products/whitepapers/xp-vs-linux.php3

xxvii Windows Vista for Embedded Systems was released. (DTS Asia), http://www.dst-

asia.com/about/05_02_view.asp?id=31&vgoto=&flash_bcate=4&flash_mcate=5&flash_scate=2

