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Abstract

In this paper we propose, implement and test a new approach to Dynamic Optimiza-

tion inspired by microbiological swarms. Our approach makes use of the strengths of

real bacteria, namely self organization, adaptation and natural selection to perform

optimization. Finally, we test and show that our swarm significantly outperforms

a state of the art approach by achieving comparable optimization in environments

moving three times the speed.
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Chapter 1

Introduction

A Dynamic Environment (DE), poses a difficult task to optimization algorithms(OA)

as the environment is continually changing. As a result, good solutions to a problem

may vary from iteration to iteration. And so, when it’s possible to model the DE,

off line methods are the best as they can efficiently approximate the best solution

[1]. However, in cases where the DE is constantly in flux with open ended novelty,

Evolutionary Computation(EC) and Swarm Intelligence(SI) methods have shown to

be adept at tracking the progress of optimal solutions through the search space  [211.

Many types of SI based on the characteristics of biological swarms(Birds, Ants),

have been used for Dynamic Optimization (DO). However, no attempts have been

made to use the characteristics of microbiological organisms. A microbiological or-

ganism like bacteria live in a highly dynamic world, where changing temperatures,

food sources, and predators are factors that require a wide variety of skills to survive.

And so, the minute to minute life of a cell is a type of implicit optimization problem

that is known as foraging [201. Here, cells attempt to maximize their environment by

finding adequate food sources and breeding areas while minimizing the energy they

expend finding these locations. Therefore, as their foraging is a dynamic optimization

problem, it makes sense that cells would have a host of skills that could be applied

to optimization algorithms in dynamic environments. There are several important

traits of the micro-organisms that allow them to be effective at foraging in a dynamic

environment.
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The reason we find bacteria living in the near boiling water in underwater

hotspots and other places like our counter tops is due to their adaptability. Adap-

tation is achieved by changes of the characteristics of a cell through a process called

mutation. Mutation modifies the cell’s genome which results in a change in the phys-

ical structure of the cell as well as the decision making processes. These changes

may result in a novel feature that could help the cell survive. Mutation is also very

important as it diversifies the genome base of the whole colony [2]. This gives the

colony greater flexibility and resilience as the colony is less likely to be wiped out by

a sudden change in the environment. A well known example of this is the anti-biotics

resistant micro-organisms, who have developed traits of resistance through mutation.

Adaptation allows micro-organisms to gain characteristics to better survive in a dy-

namic world. Dynamic optimization algorithms that use characteristics of adaptation

could benefit by gaining better methods to track optima but also have diversity to

successfully survive a drastic change to the environment.

An important trait of microbiological swarms is that they are constantly under

the pressure of natural selection. This process only selects the most fit individuals in a

population through their competition for a finite amount of resource. Mutation here is

the process that allows for natural selection to take place by discovering characteristics

that enable the cell survive in a competitive environment. Natural selection acts

as a filter only allowing cells who are the most specialized to their environment to

reproduce. This specialization of the genome through natural selection could be

applied to DO where it could increase the efficiency of an optimization algorithm by

developing characteristics that suit the environment.

Another reason that bacteria are effective at surviving in a constantly changing

world is their ability self organize. With a wide range of communication abilities bac-

teria have the ability to work together for a common purpose giving the colony greater

abilities to survive in the dynamic conditions of their environment. One amazing ex-
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ample of this is the actions taken by a bacterial colony when placed under oxidative

stress (lack of oxygen). In this condition, spontaneous self organization occurs where

the cells aggregated such that a convection pattern emerges allowing each cell to be

momentarily exposed to oxygen rich fluid [2]. This example of ’bioconvection’ is one

example of many displaying how bacterial colonies have excellent abilities to work

together to increase their survival. Our hope here is that the DO algorithm with

characteristics of self organization should be to find optimal solutions in the search

space.

Finally, cells and bacteria may be the most studied organisms on the planet and

consequently there exists an enormous amount of literature describing their processes.

This gives us a wealth of information that is readily available without needing to enter

a biology lab. And so, we can pick and choose various features of microbiological

organisms to inspire efficient DO algorithms.

In this paper,we propose a novel algorithm based on the characteristics of a

microbiological swarm for the purpose of DO. Furthermore, as a proof of concept, we

implement, test and compare this algorithm in a benchmark test in order to determine

its effectiveness against other state of the art algorithms.

Our paper is structured as follows. Chapter 2 provides the reader with the

fundamental concept of optimization as a method for problem solving. Furthermore,

it outlines characteristics and concepts that are used to evaluate both optimization

algorithms and optimization problems This is followed by chapter 3 with a discussion

of modern optimization approaches with emphasis on systems using SI. Finally we

discuss our proposal (chapter 5), its design and implementation (chapter 6) as well

as the results from a series of tests(chapter 7). The paper ends in chapter 8 with

discussion of future avenues of research work and concluding thoughts.



Chapter 2

Optimization Theory

In the automated search for a solution to a complex problem, a brute force search

through the problem space is often too expensive to perform. Optimization The-

ory(OT) is the branch of computer science that deals with finding optimal algo-

rithms(OA) that attempt to minimize the search time and maximize the solution. The

core assumption of the optimization process is that good solutions will be grouped to-

gether in the search space. And so, information about current solutions should be used

to locate new and better solutions without having to randomly guess at their locations.

Typically, OA have been successfully applied to real world problems as well as NP-

Complete problems such as the Travelling Salesman Problem(TSP) with great success.

Recently, new types of optimization algorithms based on a form of Artificial Intelli-

gence(AI) have been developed, resulting in state of the art performance [7]. There are

many differences in how these algorithms perform optimization, however the funda-

mental concepts of optimization theory are at the heart of their solutions.

In this chapter we discuss the concepts of optimization as well as characterize

the types of problems optimization algorithms work with.

2.1 Optimization Definitions

A formal definition of optimization is the following [14]. In any optimization problem

P, there exists a solution space S that contains every possible solution to the P and

a feasible solution space F such that F C S . The feasible solution space contains

4
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all solutions to P which meet some condition. The objective of any optimization

algorithm is to find a solution s E F that will minimize a cost function c as described

by Equation 2.1.

c (S) = min{ c (T) : T E F} (2.1)

Also, each problem P must have an objective function f that defines the quan-

tity to be minimized or maximized. This function acts upon a set of variables

x = {x 1 , x2 , ..., xn } such that f (x 1 , x2 , ..., xn) → s . Here f maps a sequence onto

a candidate solution. The dimension of P is defined as the number of elements in

x, or II x II = n . We also define the landscape of P as the shape of the solution

set. Finally, the neighbourhood N of any candidate solution is all other candidate

solutions csuch that s, c E S and I s − c I < r . Where r is the euclidean distance

r2 = x2 + x2 ,...,
 x2

1 	 2 	n .

2.2 Optimization Method Classes

Optimization algorithms search for an optimum solution by iteratively transforming a

current candidate solution until an acceptable solution is found[13]. A defining feature

differentiating these two methods of OA is the type of solution the algorithm finds

from iteration to iteration. The first class of algorithms are known as local search

algorithms. These algorithms use local information in the search space to locate

optima. As a result, local search algorithms will only converge on a local optima,

with no guarantee it will be the globally optimal. On the other hand, a global search

algorithms do not restrict their view to neighbourhoods but rather explore the entire

search space.

The OA methods can be further broken into two more classes by the type of

transition rules used at each iteration. Rules that contain a random element are

said to be stochastic and are defined as Stochastic methods. The outcome from each
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iteration to the next cannot be predicted. Deterministic Methods do not contain

randomness and the outcome of each iteration can be predicted.

A final important classification is based on the environment in which our OA

is to work. We define Static Optimization(SO) to be all optimization which happen

on static environments. That is, for each iteration of the search, the values in the

search space are unchanging. Dynamic Optimization(DO) is optimization where the

search space is in flux during the search process. The objective of DO is different

from SO with an additional constraint to deal with a environment whose optima may

be moving. And so, the aim is to track the progression of optima through the search

space as closely as possible while minimizing the cost of the search (Equation  2.1) [1].

2.3 Optimality Conditions

In any optimization problem space, there are areas where the solutions are of higher

and lower quality. Mathematically, we define the areas as optima of different types

depending on if we are performing a maximization or minimization of the problem

space. In the case of maximization we define the global maximum as the best solution

of all the set of candidate solutions. A local maximum as a best solution within a

neighbourhood N. And a weak local maximum as the best of the worst within a

neighbourhood. Figure 2.3 illustrates these cases.

2.4 Optimization Process: Exploration vs

Exploitation

As a final thought to the process of optimization, OA must strike the right balance be-

tween two contradictory objectives of Exploration and Exploitation [21]. Exploration

is the search characteristic of an algorithm that aims to find a diverse set of solutions



Figure 2.1: Optima for Maximization Problem.

[13]. This results in generally slower convergence onto optima but gives the algorithm

a greater opportunity to locate global optima and avoid being trapped in local ones.

The extreme case of this is the purely exploratory algorithm. This search process can

be thought of as a random search, as the current position in the search space has no

effect on next position. On the other hand, Exploitation is the search characteristic

where an algorithm makes the most use of current solutions[21]. In this case, the

algorithm will converge upon optima at a quicker rate as the search is focused within

the neighbourhood of the candidate solution. However, the risk of having too much

of the exploitation characteristic in the algorithm is that it will converge on a local

optima and will not have the exploratory capacity to discover new solutions outside

the local optima. As a result, a balance of exploration and exploration is needed for

optimization algorithms to be efficient in wide variety of problems.

7
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2.5 Characteristics of Optimization Problems

Now, in each optimization problem, there exist six important characteristics [13].Each

of these serve to define the problem space. As a result, variations among these char-

acteristics can be good predictors of how hard a problem will be for an optimization

algorithm.

• The number of variables in x that are used in the objective function. As we

increase the number of variables, we increase the number of candidate solutions

in S by the size of each dimension. Any problem with more than one variable

is called multivariate or multi-dimensional.

• The types of variables in x plays an important role in characterizing the

problem. If all the variables in x are elements of the real numbers  xj E R

then we characterize the problem as being a continuous value problem with a

theoretically infinite search space only bounded a computers precision. When

xi E Z then we say that problem is an integer or a discrete optimization prob-

lem. A modified type of discrete optimization are combinatorial optimization

problems that attempt to find the best permutation of a set of variables. An

example of this type of problem is the TSP, or other graph problems

• The degree of non-linearity of the objective function describes what type

of function is being used but also the shape of the fitness landscape. Linear

objective functions are of the form

f = aX + b

and can be seen to have simple gradients and that are easy to optimize as once

a candidate solution s is found, another solution of equal or better quality will

be in the near neighbourhood of s. Quadratic objective functions will take the
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form

a 1 x2 + a 1 x + x = 0

and will have characterized with more optima generally harder to optimize.

The most difficult type of objective function are non linear their environment

provides the least amount of information that can be derived by a current

location.

• The number of optima can serve to characterize the problem and its environ-

ment. When only one clear solution exists, we can consider the problem to be

unimodal. However, in the cases that more than one optima exists, we consider

the problem to be multi-modal.

Each of these characteristics are important to defining an optimization problems

difficulty. In the case of Dynamic Environments, addition characteristics are required.

2.6 Characteristics of Dynamic Optimization

Problems

While there have been a few authors that have defined various characteristics of

dynamic environments [13] [1] [8] [9], the following four characteristics are agreed

upon.

• the frequency of change of an environment describes how often the environ-

ment changes. This description can also be defined as how many evaluations of

the objective function can be made between each change to the environment. In

the example of finding the optimal route home, the frequency of change is very

high and optimal routes may change minute by minute. However, if the opti-

mization algorithm only received updated information about the environment

every hour, our frequency of change would be very low.
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• The severity of change is a defined as the euclidean distance between an

optimum’s previous location and its current location in one update to the en-

vironment. The severity is calculated by (distance moved)/(max movement

possible) in the environment.

• Predictability of change  is the characteristic of dynamic environments that

defines how much randomness is in the environment. If the changes are purely

random then it is said to have no predictability. However, if there exists a

pattern to the changes, the environment is said to have a high predictability.

• Cycle length / Cycle Accuracy describes the cyclic nature of some environ-

ments. For problems that have a period to the movement in a specific pattern,

it is possible to describe the cycle length as the number of updates to the en-

vironment for a complete cycle to occur. The Cycle accuracy defines how close

the next of each cycle is from one another.

Each of these characteristics in DO can be used a marker for the difficulty of a given

problem. Because each of these characteristics introduce very difficult dynamics for

optimization algorithms, many different approaches have been attempted.



Chapter 3

Modern Approaches

One approach to DO problems is an active field of AI known as Swarm Intelligence(SI).

It is abstractly based on biological swarms such as ants, fish and birds. SI examines

the collective intelligence or problem solving that stems from the interaction of swarm

members. Ants, for example have the ability to collectively find the shortest path

between a food source and their colony through the use of two simple mechanisms

[7]. The first is, that as they walk, they deposit a chemical known as pheromone.

The second mechanism is that they are probabilistically more likely to follow trails

with higher pheromones levels. As a result, shorter trails to and from the food source

will accumulate more pheromones, as ants will make more passes to and from the

colony on them. This results in shorter trails having higher pheromone levels which

in turn attract more ants along to the trail. And so, through distributed decision

making, the ant colony collectively finds the shortest path between two points. In

the following section we will discuss the important qualities of SI as well as how SI

has been applied towards DO.

One of the main qualities of SI is that it is based in Self-Organization(SO).

Biological systems self organize through two types of feedback loops. A positive

feedback loop is a process that will bring greater change to a system  [10]. In an ant

colony, the positive feedback loop is the accumulation of pheromone on a trail, which

in turn attracts more ants to the trail. The negative feedback loop is the evaporation

of pheromone from the trail. SO systems are often very sensitive to the parameters

of the feedback loops. For example, if the evaporation rate of pheromone is too high,

11
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then a trail can never be formed. On the other hand, if the evaporation rate is to low,

new paths will never be examined even if they are of a better quality [7]. And so, the

SI systems use feed back loops to organize their agents towards a common purpose.

The second quality of SI is the property of emergence. This is understood as

the idea that the ’whole is greater then the sum of its parts’. The emergent property

of the ants pheromone laying and trail following is that a shortest paths is found.

However, clearly ants are not aware that they are finding the shortest path but are

rather simply responding to stimuli in the environment. And so, a property of the SI

problem solving is that agents cannot be explicitly programmed to solve the problem,

but the solution must emerges from their interaction. Unfortunately, humans are not

very good at predicting the outcomes complex adaptive systems like swarms  [12] and

so SI researchers often make use of biological swarms to develop applications  [13].

Optimization algorithms that use SI have a population of agents that move

through the search space. As each position in the search space represents a candidate

solution the problem. A form of parallel optimization process occurs as the swarm

uses information about its members/and or the environment to make decisions on how

to move. SI based optimization algorithms are considered to be from the stochastic

optimization class as randomness is used to reflect the probabilistic nature of the

swarms [13].

3.1 Principles of Swarm Intelligence

Above and beyond the qualities of SI swarms listed above are six basic principles  [19].

Each of these principles are important as they outline the basic rules that OA based

in SI must follow in order to be successful at optimization.

• The first is the proximity principle and is that the group should be able

to make elementary space and time computations. In other words each agent
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should have the ability to make decisions based on its local environment as well

as move through it.

• The second is the quality principle. This defines that the group should be

able to assess the quality factors in the environment. For example, an agent

should be able to asses the strength of pheromones are in an area.

• The third is the principle of diverse response which outlines that the group

should not allocate all of its resources along excessively narrow lines. The swarm

should allocate its’ resources along as many lines as possible insuring against

sudden changes to its environment.

• The fourth is the principle of stability. The group should not shift its be-

haviour from one mode to another upon every fluctuation of the environment

• Finally, the fifth is the principle of adaptability. This is, if changing be-

haviour will likely give a good return on the time spent switching, then it

should be done.

Each of these principles are important they reflect a problem solving method

that is used by real swarms in nature. Optimization Algorithms implementing these

principles, have been successful at DO as they can be flexible in different environments

[13] .

3.2 Particle Swarm Optimization (PSO)

One approach to dynamic optimization problems is called Particle Swarm Optimiza-

tion(PSO) and is based on the collision avoidance of birds[13]. The main concept is

that a swarm of particles, fly through a problem space by emulating the success of

neighbouring individuals [13]. We will first outline the basic PSO model for static

optimization and discuss how it has been modified for dynamic environments.
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3.2.1 Basic PSO

The basic PSO is a swarm where each agent known as a particle is only aware of

its current position, its current direction vector, as well as two vectors known as the

cognitive component and social component.

The cognitive component c1 r1 ( lbest — xi), points from the particle’s current

position towards the particles best found position in the search space. This position

is known as lbest The cognitive vector is scaled by a constant  c1 and an random value

r between [0,1] . The constant c1 is a user defined variable that can be modified for

different behaviour. This constant would be changed from problem to problem to

increase the effectiveness of the algorithm. The random value r[0,1] has the effect of

adding randomness to the particles response at each time step. As the particle moves

in a direction away from its personal best, the magnitude of the cognitive vector will

increase. However, if the particle continues to find a personal best locations at each

iteration, there will be little attraction towards the lbest position. If the particle’s

path is unsuccessful at finding better locations, it will experience greater attraction

towards the lbest position. This attraction dynamic encourages the particle to explore

the area around its best found position.

The social component acts much like the cognitive component but is attracted

to the best found position among all particles. The social component is defined

as c2r2 (gbest — xi ) where gbest is the position with highest value among all of the

particles. Like the cognitive component, the social component is scaled by a c2 value

and a random between [0,1]. The social component ensure that the particles fly

towards a position that is optimal within the whole swarm.

Now, the movement occurs by calculating a movement vector composed of the

previous direction + the cognitive and social components (Equation  3.1 and respec-
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tively Equation (3.2)

xi (t + 1) = xi (t) + vi (t + 1) 	 (3.1)

vij ( t + 1) = vij + c1 r 1 j (t ) [yij ( t )
 — 

x ij ( t)] + c2r2j (t ) [gbestj ( t ) x ij ( t )] 	 (3.2)

The basic PSO is described in pseudocode in Algorithm  1 based on a description

in [13] . 	 The optimization process of the basic PSO can be thought of as an

Algorithm 1 : Basic PSO Algorithm
let f be our fitness function let S be our search space
Create and initialize a n dimensional swarm S
begin

while not done do
foreach particle p c S do

set the personal best position
if f (px ) > f (Spbest ) then

ppbest = px

set the global position
if f (px ) > f (Sgbest ) then

Sgbest = f (px )

foreach particle p c S do
update velocity using equation  3.2
update position using equation  3.1

end

initial exploration phase with acceleration towards an optima by all particles. The

exploitation process begins as the particles decelerate as they moves upwards into an

optima. This exploitation gradually shrinks the distance between each particle by

reducing to the diameter of the swarm and as well as its diversity  [9] .

3.2.2 PSO Variants for Dynamic Environments

PSO Variants have been successfully applied to DO problems. The basic PSO has two

issues that need to be addressed in order for the swarm to perform well on tracking

tasks in the dynamic environment.
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The first issue is a outdated memory problem. As the environment moves, both

the value of the cognitive and social components may be out of date and incorrect  [8].

A simple solution to this problem relies on the particles being aware that a change

has been made. In this case, a simple re-evaluation of the gbest and pbest informs

the particle of the change in the quality of its location [6].

The second issue that PSO must deal with in dynamic environments is that

as a swarm converges on an optimum, it looses diversity as the average diameter of

the swarm shrinks [6] . In the case where the optimum has not moved outside the

diameter of the swarm, after few iterations the swarm will re converge on the peak.

However, in the case that the severity is great enough that the new position of the

peak is outside the diameter of the swarm, the lack of diversity will often not allow

the swarm to move quickly enough to find the moved optimum. It may be helpful

to imagine each particle to be very close together resulting in very short difference

vectors between the gbest and the current position. The result is that short vectors do

not allow for large displacements as defined by the update equations  3.2, 3.1. In order

to deal with this case, some techniques attempt to diversify the swarm when a change

has occurred [8] . However it has been suggested that more permanent solutions will

be a better approach [8] .

One attempt to deal with DO is to augment the social component of the par-

ticles. In these approaches, particles are informed of the quality of the position of a

group of other particles within the swarm. The group that the particle belongs to

is called a subswarm who effect the particle by drawing the social component vector

towards the best position of group. Investigations on different subswarm topologies

have been done with many interesting findings  [16],[17], [13]. Unfortunately, there

is some recent evidence that fully informed particles(aware of all other particles) are

less able to perform in dynamic multi-modal and static environments [25] .

Other types of PSO schemes have been the use of a ’inertia’ weight that es-
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sentially act as a weight pulling particles in their current direction making them less

susceptible to local optimum[18].

One example of a very successful approach is Branke’s Self Organizing Scouts(SOS)

[6] . The idea here is that a colony of charged swarms are initialized into the environ-

ment. The analogy is to atoms where a charged particle will repel other particles of

the same type. The SOS employs a principle of exclusion where an optima is only

allowed to have one swarm tracking it. Furthermore, the SOS systems makes use of

anti-convergence which ensures the there will be at least one free swarm patrolling

the area. The result is a swarm that is effective at monitoring multiple peaks while

at the same time being flexible enough to discover new optima should they appear in

the environment.

Afinal example of a PSO variant, makes use of evolutionary mechanisms such as

mutation and speciation to modify how the PSO acts during the optimization process

[18]. Here the PSO uses mutation by continually changing the subswarm that particles

belong to. This is complemented with speciation that occurs as the swarm reaches

a converged threshold based on the diameter of the swarm. When the threshold

is reached, the swarm is considered to have converged and its particles split into

subswarms of charged particles forcing some particles to move away from the center

of the swarm. The result is that new subswarms are formed. Each new subswarm

can then converge onto new optima and and split again. This converging/splitting

process continues until the maximum number of subswarms is reached. This in turn

gives the entire swarm a better ability to track movement of optima as well as provide

greater flexibility when the environment has drastic changes  [18].

Particle Swarm Optimization is a well researched and well developed area for

DO with many successful implementations. The strenght of the PSO approach is its

simplicity and efficiency of the algorithm. Each iteration requires few operations to

construct the movement vector(Equation 3.2) and update its position. Even with
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additional features such as subswarms and charged particles the PSO algorithms

remain a simple yet effective method to perform DO.

3.3 Self Regulating Swarms

A very unique SI based approach to DO is proposed by Ramos in  [211. Here he

implements an innovative technique that hybridizes Ant Colony Optimization(ACO)

with a simple evolutionary mechanism of reproduction to achieve high tracking rates

in dynamic environments.

Ramos’s swarm called the Self Regulating Swarm(SRS) is a population based

optimization algorithm where each agents(ants) moves thought the search space de-

positing pheromones based on the fitness of the location. Areas of poor quality receive

little to no pheromones while areas of higher fitness receive more pheromones. This

creates a pheromone field around the landscape whose greatest pheromone densities

are in areas of higher fitness. As each ant is attracted to the pheromones in its

neighbourhood, this causes the exploitation of areas of higher fitness as it produces

an auto catalytic positive feedback loop like the ones we describe in the principles

of Self-Organization. As a result, tracking occurs as ants explore then exploit the

landscape by the laying and then following pheromones trails in the environment.

Ramos also includes very non-antlike features that we view as micro biologically

based. The first feature is environmental pressure. In the real world, the environment

produces pressure towards successful behaviour. Cells in excellent habitats reproduce

faster and live longer then cells in inhabitable habitats. In the case of the SRS, each

individual i in the population receives a relative fitness based on the fitness of its

current location given by the Equation  3.3

rf = AZ 	(3.3)
Amax



19

Where Amax = I zmax — zmin I is the difference between the maximum fitness z max

and the minimum fitness zmin of the entire population. In the case where we wish

to maximize the environment then A i = I zi — zmin I . When we wish to minimize

the environment then the equations complement is A i = I zi — zmax I . This relative

fitness value between zero and one acts as environmental pressure by scaling the

probability of reproduction and the amount of pheromone deposited by the ant as

seen in Equations 3.5 and 3.4.

T = η + p
 [i ]

	(3.4)
Amax

P* = P** (n ) A [i ]

	(3.5)
[Amax

]

The pheromone depositions rate of an ant is based in part on its relative fitness (Equation

3.4). At each time step, an ant will add to the its current location a constant amount

of pheromone N plus an additional amount scaled by its relative fitness.

The strengths of the SRS is its relatively simple agents(ants) that perform

simple updates, yet the emergent behaviour from the swarm is state of the art tracking

in dynamic environments [21]. Furthermore, the use of the relative fitness allows for

a continual pruning of the swarm agents based on fitness of their location in the

environment. Poor areas are not explored in detail while areas of high fitness are

exploited by the swarm.

The main weakness of the SRS is that it does not have method to adapt to

the environment past its initial settings. For example, the pheromone evaporation

rate is a fixed constant. In environments of high severity where optima move often

and by large amounts, the pheromone field left by the ants is constantly out of date

with the current environment. As a result, swarming will occur towards locations

that no longer contain optima. This is equivalent to the outdated memory issue in

PSO’s optimization process. However, in the case of the SRS, there is no method
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to re-evalute past locations as this would require the re-revaluations of the entire

pheromone field and therefore would be prohibitabily expensive to perform. As a

result of not being able to adapt to the environment, the SRS cannot be flexible and

track optima in wide variety of environments.

In closing this chapter, it is important to note that our focus on DO is restricted

to approaches using SI. There exist many other approaches including Genetic Algo-

rithms, and other forms of evolutionary computing techniques to perform DO. The

reader interested in learning more about these types of approaches are encouraged to

read the following papers [5], [15], [26], [11], [24].



Chapter 4

Bacterial Background

As our intent is to develop an optimization algorithm based on the characteristics

of microbiological swarms, we must have a good understanding of how these swarm

work. With this in mind, in this chapter we carefully examine in detail how a specific

microbiological organism (E.Coli) achieves self-organization and adaptability in a

dynamic environment. Many of these characteristics will then be applied to our

algorithm in following chapter.

One of the most well studied types of bacteria is E.Coli. It is composed of

a plasma membrane, cell wall and a capsule which contains the cytoplasm and the

nucleoid. In addition to these it also has a rotating flagellum used to move in the

environment and a pili for transferring genes to other cells. The E.Coli cell has the

width of 1 nanometer, is 2 nanometre in length and weighs approximately 1 picogram

[20]. E.Coli are social bacteria as they aggregate to form colonies of millions of cells.

Colonies are extremely adaptable to various environments due to mutation.

The E.Coli cell has genome of 4,639,211 genetic letters which are arranged into 4,288

genes[20]. Reproductive mutation occurs at a rate of 10 7 per gene, per generation.

And considering that a bacteria like E.Coli will split into two separate cells every

20 minutes, new generations are very frequent. As a result, there is a constant

trial and error process where new cells are created with new characteristics that are

then tested by their survival in the environment. Mutation will also occur due to

the environmental stress. Recent studies show that when bacteria are exposed to

an oxidative stress(lack of oxygen) they may spontaneously mutate [2]. This form
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of latent mutation allows cells to attempt a last effort in order to survive in an

environment that they are not well equipped. If the mutation is successful, this

characteristic will be reproduced in the cell’s offspring as it reproduces. And so,

mutation causes a constant diversification of the gene pool. This results in E.Coli

colonies have the ability to withstand rapid changes in their environment but also

have an efficient mechanism for finding important characteristics to survive.

Bacteria move through the environment in a motion pattern called taxes. These

motion patterns can be caused by a host of different stimuli(light, heat, oxygen,...)

and result in the cell swimming up or down the stimuli gradient. Figure  4.1 illus-

trates a stimuli gradient where a cell will swim towards the higher concentration of

stimuli. Chemotaxes is the movement pattern in response to chemicals in the envi-

Figure 4.1: Stimuli Gradient

ronment and occurs by the bacteria sensing an attractive or repellent chemical. For

example under experimental conditions, when peptone(food) is introduced into the

environment, bacteria will quickly move towards the source at a mean speed of 10-20

nanometre/second! This is equivalent to a person swimming 100 meter freestyle in

the range of five to ten seconds. As the cell swims, its movement is subject to random

changes in direction of about 30degrees per second [20].

Intra-Cellular communication happens in at least three methods in order to

self organize. The first method is called chemotactic signalling which is the secretion

of attractant/repellent into the environment in response to stimuli. Chemoattrac-
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tants induce a cell to swim towards its source while chemorepellents induce a cell to

swing away from its source. As a cell detects a new source of food, it will secrete a

chemoattractant chemical known as cAMP that diffuses into the environment [10]. In

response to the chemoattractant, other cells release their own cAMP and swarm up

the gradient. This self-organizing process, called relay, effectively alerts the colony

of the discovery of a food source as well as its general location  [10]. Furthermore,

chemotactic signalling can happen in various forms that include short and long range

signals. Long range chemorepellent can help a colony expand outwards in search of

new food sources. On the other hand, short range signals allow the cells to interact

locally in order to create form in specific formations like those used to swarm towards

a food source. Another method of intra-cellular communication is through gene acti-

vation and deactivation called gene expression. In this form of communication, cells

may signal neighbouring cells to express specific genes. This causes a ripple effect

among the bacteria where specific genes are temporarily modified in neighbouring

cells. What happens next depends on which genes are expressed, however in the

case of the Proteus Mirabilis bacteria, they stop dividing, grow in length and grow

extra flagella [2] . They will then group together to form collective rafts which move

efficiently on a hard surface. Once they have moved away form their initial location,

they will differentiate back into their normal shape. This example illustrates the

power of communication through gene-expression. Another form of communication is

through conjugation where one cell will pass on information in the shape of a gene to

another cell. This form of specific gene transfers allows the colonies to create a type

of hereditary memory [2]. Therefore, bacteria have a wide variety communications

channels which they use to act effectively in groups.

In the following chapter we outline our proposal based on the characteristics

discussed above.



Chapter 5

Proposal

Many modern approaches have used the characteristics of insects and animals to cre-

ate efficient optimization algorithms for dynamic environments. However, there has

been no research on the application of microbiological swarming for DO. This pro-

posal centres on important qualities of bacterial swarming namely, self-organization,

adaptation and natural selection. In this chapter, we first the outline characteristics

that a DO algorithm must have if it is based on the swarming of microbiological

organisms. This is then followed by a detailed description of our algorithm based on

the outlined characteristics.

5.1 Algorithm Requirements

With the basis for developing an algorithm using SI in mind, we will use a population

of agents that we call cells, who have specific characteristics like real microbiological

organisms found in nature. Here we outline specific characteristics that should be

implemented in our agents.

The first characteristic our cells should have is the ability to evaluate its current

position and release a chemoattractant if the location contains a good source of food.

Chemorepellents should be released into the environment if the cell density in the

area is above a threshold.

The second characteristic is that cells should have the ability to move through

the search space in response to stimuli presented by its local environment. Cells should
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have no explicit memory of the environment or its previous states. Chemoattractants

should steer the bacteria up the diffusion gradient while chemorepellents should steer

the bacteria down the diffusion gradient. Any movement should be subject to an

exploratory random movement dynamic. Furthermore, cells will need to move at

each time interval in a direction and speed.

The third characteristic is that cells should have the ability to adapt to the envi-

ronment through mutation. In this case, we will need to have a genome which controls

various features including the speed of movement, the sensitivity to chemoattractant,

etc. This genome should be subject to mutations during the process of reproduc-

tion but also environmental stress. Mutation will cause cells to behave differently

depending on the parameters of each feature.

A fourth requirement is that reproduction should occur based on the amount

of nutrients in the environment. This means each location in the problem space will

have a fitness value. Cells who are in unfit locations should have lower reproduction

rates then cells in locations of higher fitness. As a result of reproduction based on the

fitness of the environment, cells whose genomes are well suited to the environment

should reproduce more often as they will more often be in fitter locations.

Finally, our bacteria must be subject to natural selection. The fittest individuals

should survive and be allowed to reproduce.

5.2 Algorithm Description

Our algorithm implements the requirements of specified in the above section. First of

all our algorithm is a population based SI approach with agents that we call cells. Each

cell has a basic life cycle of composed of six processes; birth, movement, signalling,

reproduction, mutation and finally death. In each iteration of the algorithm, the cells

perform decision making and actions based on the status of their local environment.
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The pseudo code description of the algorithm is found below as Algorithm 2 and the

details are explained in the subsequent subsections.

5.2.1 Cell Attributes

In order for the cells to adapt to the environment, we propose that each cell has a

genome that controls how the cell behaves at each time step. To do this, we suggest

seven characteristics each having an associated mutation rate. Each characteristic

has the ability to modify the exploration and exploitation of the algorithm.

• Step Size (A): This represents how far a cell can move in one time step. Cell’s

whose step size approaches the movement in the environment should be better

at remaining within an optimum at each step. For example, environments with

higher severity should require moving a greater distance between each time

steps to stay in a optima. Cell’s with a large step size would better exploit the

environment by remaining moving along with the optima.

• Viewing Radius ( A ): This specifies how far the cell can sense signals in

environment. In some environments such as low severity, a larger viewing radius

should increase the exploitation of the cells movement by providing a more

accurate depiction of all the chemotactic signals in the environment.

• Max Age (c.maxage): Each cell at birth is given maximum amount of time to

live. However, at each time step, the cell has a probability to survive based on

its current age(c.age). Equation 5.1 is first proposed by Ramos in [21]

c . maxage − c . age
Psurvival =   (5.1)

c . maxage

Mutation of this characteristic will change how the cells may explore or exploit

the search space. As raising the max age has the effect of letting cells live longer
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Algorithm 2 : Microbiological Swarm Optimization
let f be our fitness function
let S be our search space
begin

initialize cells in random position inside the search space S
while not done do

/* find max and min height 	 */
foreach Cell c E S do

cfitness = f (cpos )
if cfitness > zmax then

zmax = c f itness

if cfitness < zmin then
zmin = c f itness

Δmax = zmax — zmin
foreach Cell c E S do

rf = c fitness /Δmax

; /* Calculate probabilities for signalling,
reproduction, mutation */

Preproduction  h (harshness 0 i )reproduction = 	 ,
 max

Pmutate = h (harshness , 1 — 
 Ai 
Amax )

CA= σo
i 

Amax
/* Add Chemo Attractant to the environment */
S.addCA(CA)
/* Reproduce 	 */
if random [0 , 1] < Preproduction then

S.addCell( c.split (Pmutate ))

/* Mutate due to environmental pressure 	 */
if random [0 , 1] < Pmutate then

c.mutate()

; /* Move via Equations(5.5, 5.3, 5.4) */

calculate â, b̂

cpos+ = v^ = Δ((αâ + βb̂) lyN [0 , 1])
cage — = 1

end
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and explore the search space for more iterations. This effectively increases the

radius of search for the colony, increasing the probability that new locations of

high fitness may be discovered due exploration farther away from the center of

the colony.

• Sensitivity to chemoattractants (cell sensA ): is the sensitivity to chemoat-

tractants within the viewing radius. As this variable changes, there will greater

or less sensitivity to attractants in the environment. Mutations of this variable

will allow the cells to ignore chemotactic signals in very high severity environ-

ments as the chemotactic map is continually out of date. The opposite is also

true in that in environments with low severity, the chemotactic signals in the

environment will accurately denote the fitness of the locations. And so, cells

with a high sensitivity will quickly move towards the area of high fitness and

reproduce more frequently then those who do not.

• Sensitivity to chemorepellents (cell sensToR ): is the sensitivity to chemore-

pellents within the viewing radius. This has the opposite effect of chemoattrac-

tants and will serve to push the cells away from high density locations.

• Randomness of Movement (Γ): represents how random the movement of the

cell is at it moves in a direction. In certain environments, it may be beneficial

to only move in on direction instead of an exploratory random walk. In this

case, a reduction to the randomness of movement will aid the cells to track the

optima.

• Birth Radius (cell BirthRadius ): This is the euclidean distance away that a

offspring can be born from its parent. Depending on the environment, this may

also play an important role by affecting the where reproduction will occur. In

environments of high severity, having a larger birth radius will allow for cells to

be born in or slightly ahead of a moving optima.
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Each characteristic plays an important role in how each cell will behave. We

propose that the mutation of the genome will allow the cell to develop behaviours

better suited to the environment.

We will now describe how each cell will decide to move at each iteration of the

algorithm. For the purpose of our calculations please read overbar of the vector to

be the normalize vector with magnitude of 1. We define the normalized vector  x as

x 
x =

 1x I
where

x l = Vxi + x 2
2 + ...x2

n

5.2.2 Movement

Movement occurs in each iteration of the algorithm by each cell. At each time step t

a cell will make a decision based on local information contained in the environment.

The next position is found by

pt+1 = pt + v̂  (5.2)

Equation 5.2, where p is our current position v̂ is the movement vector. In line with

the characteristics we have specified in the previous section. The decision process and

its vector are based on three main factors: the location and strength of chemoattrac-

tants, chemorepellents and a random movement. We represent each of these features

as vectors giving a cell both a direction and magnitude away from its current position.

Inorder to simulate the attraction of cells to chemoattractants, we create a

chemoattractant vector â that points towards the greatest strength of chemoattrac-

tants within the viewing radius (Equation  5.3).

λA 	
â = E ((Apos —cellpos )(A conc ))(cell sensA ) 	 (5.3)
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This vector has the effect of pushing the cell towards the chemoattractants in

its local environment. To create this vector, each chemoattractant A has a position

that is used to create a difference vector between the cell and chemoattractant. This

vector points from the cell to the location of the chemoattractant. Once this is

done, the difference vector is normalized and scaled by the concentration of A to

simulate the effect of the chemoattractant on the cell. This process is done for each

chemoattractant in the viewing radius creating a resultant vector whose direction

is towards the greatest amount of attractant sensed by the cell. Now having the

direction of attraction, the final step is to normalize the vector and scale it by the

cell’s sensitivity to chemoattractants. This has the effect of allowing the cell’s genome

to decide how much effect chemoattractants will have on the final direction of the cell.

Figure 5.1 depicts this situation. Here, the difference vectors labeled with green tips

point from the cell to the chemoattractants. The direction of greatest attraction in

the environment is the solid red vector and the viewing radius of the cell is the blue

circle.

Figure 5.1: Chemoattractants effect on a cell

The second vector in the movement vector is the created through the chemore-

pellent process. Here we have slightly cheated as we assume that decision process of

chemorepellents is based on the density of cells within an area. As a result, instead of

having to place chemorepellents in the area, we implement this as the act of moving
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away from near cells when a density threshold is reached within the area. Much like

the chemoattractant vector, here we calculate a difference vector between the cells

and its neighbours and scale it by our threshold value as described in equation  5.4.

λR
b = E ((cellpos —cellpos )) (cell sensToR

) 	(5.4)

With equations 5.3 and 5.4 we can place them into the final movement vector

5.5

v" =  ((aâ + 0b̂ ) lyN [0 , 1]) (5.5)

which adds our final features of the random movement through a normal distribution

N[0,1] with a mean of zero and standard deviation of 1. This allows the normalized and

scaled chemotactic signal vectors to be randomly adjusted. Once this is accomplished,

we scale each vector by user defined constants( a, 0, ly). Again, we allow the genome

to decide how far the cell will move at each step by normalizing and scaling the

movement vector based on the genome defined step size A.

5.2.3 Environmental Pressure

As cells in optimal regions of the search space should have higher reproduction rates,

lower mutation rates and the ability to release more chemoattractants into the en-

vironment, we need a method to enforce a type of pressure from the environment.

To do this, we use a simple ranking system to establish the relative rank of each

cell against the other cells in the colony. This method was first seen in  [21] and is

described by Equation 3.3. The individual’s rank is between zero(least fit) and 1

(the most fit). We augment this ranking system with a scaling function h that better

simulates a real environment. The h function can be thought of as the harshness

of the environment. In very harsh environments only a few cells will find enough

food to reproduce while in less harsh environments the opposite is true. We use the
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relative rank combined with the environmental harshness to produce probabilities for

reproduction and mutation The h function outlined in Equation  5.6

e ( harshness — x )
h (harshness, x) = harshness 	(5.6)

scales the relative rank so that it is possible to give greater emphasis in different

areas of the relative rank curve. That is, if a cell has a relative rank of 0.77 in an

environment with harshness of 4, its scaled rank will be 0.4. Figure  5.2 demonstrates

relative scaled rank values based on different values for the harshness.

e

Figure 5.2: Probabilities values under the h function.

The function h has the interesting feature of modifying the exploration/exploita-

tion of the algorithm. Higher values of the harshness will give greater reproductive
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success for cell in area’s of higher fitness. This in turn results in less diversity of

solutions as hence less exploration.

In the case of reproduction, we give higher probability of reproduction to cells

that have higher ranks as seen in Equation 5.7.

Preproduction = h (harshness , Ai ) 	 (5.7)
Amax

This allows for the immediate exploitation of the environment based on rank. In high

fitness areas we should see the highest birth rates as well as population. In the context

of the optimization process, this allows the algorithm to focus its resources(agents)

in areas of better quality.

On the other side of this token, we can use the relative rank described by Equa-

tion 3.3 to decide which cells should perform latent mutations due to environmental

stress. We introduce this concept with the hope that this mutation process will

diversify the genomes of the colony providing with greater adaptability but also spe-

cialization to the environment. To accomplish this, cells with lower fitness will have

a higher probability to mutate at each time step. Here we again use the h function

(Equation 5.6) to scale how frequent mutations will occur at different levels of the

relative rank. The probability for mutation to occur at each time step is defined by

Equation 5.8

Pmutate = h (harshness , 1 —  Ai ) 	 (5.8)
Amax

This mutation rate is inversely proportional to its rank and is important as it provides

both adaptability but also stability to the colony by allowing for less mutation to occur

to cells that are successfully finding areas of high fitness.

Finally, our environment plays an important role in the cell’s ability to assess its

current location by releasing chemoattractants at its current location. This was first

seen in [7] and as the active deposition of pheromones by ants based on the quality
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of given movement. However, its application to dynamic optimization for optima

tracking was made by [21]. We modify this mechanism slightly (Equation 5.9) such

that the amount of chemoattractant placed into the environment is

CA =  Ai (5.9)
Amax

based on a constant amount scaled by the relative fitness of the cell. This allows cells

to only release chemoattractants in the environment in locations that are of higher

fitness. This should allow each cell to accurately inform other cells within a local

environment of the quality of his position. The result here is that the chemotatic

map created by the entire colony will reflect the fitness of the environment. Area’s of

high fitness should have the most chemoattractants and therefore have the greatest

attractiveness to other cells.

5.2.4 Mutation

We integrate mutation into our algorithm with the hopes that our cells will develop

traits which match the environment. For example, in an environment with a severity

of 0.1, we would hope that the step of our cell would converge to 0.1. This may

allow for a cell to better track the optima. To achieve proper mutation, instead of

using a normalized Gaussian distribution for mutation probabilities as is the often

the case for EC [1], we use a Cauchy Distribution which has less of its distribution in

the center and more on its tails. This has been successfully applied towards PSO’s

with mutation characteristics as seen in [13]. This should give the algorithm greater

mutation enabling faster adaptation to the environment. Our mutation operator

(Equation 5.10) C [0,1] , is probabilistically applied to each of the characteristic of the
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cell based on a individual characteristic’s mutation rate.

cell char /
 = cell char + δC [0 , 1] 	 (5.10)

As we have discussed earlier, mutation occurs in our algorithm for two separate

reasons. The first reason being through the process of reproduction which we will

define soon. The second mutation will occur based on the relative fitness of the

individual. In both cases, the h function and an associated harshness of the landscape

will be used to decide if the mutation will occur.

5.2.5 Reproduction

The process of reproduction of the cells is reproduce at every time step depending on

the relative rank. Those in locations of higher fitness will reproduce more frequently

than those with locations with lower fitness. Furthermore, the location of birth is

within a random radius of the current birth radius. This has the effect of ensuring

that cells to not evaluate the exact same location on following iterations.

During the process of reproduction, as is the case in with real bacteria, the

process is probabilistically subject to mutation. In the algorithm, the probability

of the a mutation during reproduction is the same as probability that the cell will

mutate described by Equation  5.8.

5.3 Comparison

Now that we have outlined the general framework of the algorithm, it is important

to contrast it against the existing approaches to DO.

Our swarm is most similar to the SRS system that is a hybrid of Ant Colony

Optimization and SI. The first reason our approaches are similar is that both swarms
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use the environment to store information. The SRS creates a pheromonal field in the

environment by pheromone deposits by the ants. Our approach is similar as the cells

deposit chemoattractants into the environment. In both cases information is stored in

the environment and is used to attract the agents towards better areas of the search

space.

Another similarity with the SRS system is that both systems use a reproduction

operator. However, unlike the SRS, our approach allows cells to reproduce without

the need of other cells to be within the immediate proximity. This allows our approach

to immediately exploit new found regions of higher fitness.

A final similarity between the SRS system and our approach is the use of the a

relative ranking system(Equation  3.3). In the case of the SRS, this ranking is directly

tied into the reproduction and pheromone dropping procedures. Our approach is

different as we scale the ranking and based on the h function (Equation  5.6) that

represents and environment harshnesses. This vastly changes the ranking of each

individual.

Of course, the major difference in our approach is the use of a genome and a

simple mutation operator. Mutation of the genome allows for flexibility in a variety

of environments. The result being that the swarm can adapt to the environments

allowing for better tracking of optima.

Having now outlined the general framework of the algorithm its operation, we

will discuss its design and implementation.



Chapter 6

Design and Implementation

The design and implementation of the our algorithm is described in this chapter.

However, before we discuss the design of the system it is important to highlight an

important design consideration.

6.1 Design Considerations

The implementation of the algorithm must take in many considerations in order to

account for the multi-dimensionality of optimization problems. The key issue for our

algorithm is the method that we keep track of our multidimensional chemoattractants.

Because each cell, is required to look at the chemotactic environment to make a

decisions on where to move, a search operation into the environment is required. And

so, the implementation of a data structure containing the chemoattractractants has

a significant impact on the complexity of the algorithm.

One possible implementation is using a NxN array which breaks up the envi-

ronment into discrete pieces. One such implementation is  [21] who implemented their

system in a 2D NxN Array capable of holding a pheromone value. The strength of

this approach is that local searches in 2D only require searching through the eight

adjacent cells to a particular position. However, as dimensions increase, such searches

become increasingly expensive to perform. For example, a local search in 50 dimen-

sions is 8 * 50 = 400 queries. The other weakness of a grid based implementation is

that it restricts the possible positions that our agents can move to in continues value

37
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problems. This is because we must associated each position(i,j) with some area of the

reals. Finally the third and possible greatest weakness is the space requirement to

hold very large environments in memory. Each added dimension exponentially grows

the problem space by the Equation  6.1

size = N d (6.1)

For example a problem with 32 locations per dimension with 50 dimensions

has memory requirement of 32 50 = 1 . 809251394 * 10 75 array units. Clearly this is

infeasible for real world applications.

An alternate method is to store chemoattractants in a multidimensional search

data structure like a KD-Tree. Essentially, a KD-Tree is a binary tree where each level

of the tree partitions a dimension of the search space. As you can see by Figure 6.1 we

have three dimensions being X0 , X1 , X2. Each node is labeled with the dimesion’s

value that a new node would compare against. Now, as we traverse down the tree we

rootx0

nodex 1 	nodex 1

nodex2

nodex0 	nodex0
(a) 3D KD Tree

Figure 6.1: Multi-DimensionalKD-Tree (3D)

perform a comparison with a new dimension at each level of the tree. As with a binary

tree the comparison identifies on what side of current node the new node should be.

The traveral down the tree continues until an empty sub tree found where the new

nodex2
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node is then inserted. A Java based insert method can be found in the Appendix

A.1.1.

The performance of KD-Trees is impressive mimicking the classic binary tree

performance of O( lo92N) for both insertion and and search [3]. Important to our

discussion is the range query. This returns all items within a given range. This

query is used every iterations for cells searching for the chemotactic signals with their

viewing radius. The expected performance of the range query is O(( lo92N + F) with

a worst case of O( dl̇o92N
1-1 /d + F) where d is the depth of the tree, N is the number

of points in the tree and F is the number of points within our range [4] .

An important note is that performance of the KD-Tree is based on a random

insertions. In the worst case, a KD-Tree can degenerate to O (n) performance for

insertions and queries. As a result, certain steps to add randomness to the insertion

process should be taken [23].

6.2 Design

The basic design of the system can be shown in the UML diagram of Figure  6.2.

The diagram has been simplified in order to illustrate the overall functioning of the

system.

The main package is the ca.log2n.gav.asrs.optimizer as it contains the Opti-

mizer and Environment classes. The Optimizer class is the heart of the optimization

process as it performs the main algorithm described in Algorithm  2. It has access

to the supporting data structures such as KD-Trees that hold both the cells and

the chemoattractants. The Environment class that is responsible for simulating a n-

dimensional linear update environment and providing the fitness of a given position.
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Figure 6.2: Simplified UML

Within the ca.log2n.gav.asrs.swarm package, are the cell, genome and chemoat-

tractant classes. The Cell class is responsible to hold a current location and direction

but also a genome. The genome class contains variables for each of the outlined

characteristics but also the mutation operator that will randomly modify the genome

based on the Cauchy Distribution. The Chemoattractant class defines a the charac-

teristics of the chemoattractant in the environment (size, diffusion rate, ect).

The ca.log2n.gav.asrs.maths package contains the classes used for mathematical

purposes. A very important class is the Point class found in this package. This class

is a generalizable point for n-dimensions. This class contains many of the methods

used for the addition,subtraction but also a host of vector type operations such as
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scaling and normalizing. The ExtendedRandom class is responsible for all of the

random methods including one for the Cauchy Distribution. The final class that we

discuss in this package is the Function Interface. This class defines an interface so

that any function can quickly be added to the function list by simply implementing

the interface. This is the function that we want to optimize during our optimization

process. Designing at this level of abstraction is very powerful as it can allow users to

define very complicated fitness functions. For example, during the later stages of the

programming, we implemented a fitness function whose goal was to return how well

our optimizer performed over a test with a given set of parameters. In other words,

we were able to run the optimizer on itself to discover a set of good initial parameters.

The data structures supporting the system are the KDTree and the FastArray

that are found in the package ca.log2n.gav.ds. These data structures are used to

maintain the list of cells and chemoattractants in the search space.

Finally, the ca.log2n.gav.asrs.utils package contains the classes required to test

the system. The Statistic class needs to be able to keep track of the information

regarding the status of the cells at each iteration. The statistic groups the infor-

mation into two sections being optimization progress, and genome status. For the

optimization progress, the statistic class keeps track of the maximum, minimum, av-

erage, variance and standard deviation of both position and fitness. The statistic

class also keeps track of the average, variance and standard deviation regarding the

cells genome characteristics.

The log class has the role of writing status information collected by the Statistics

class to file.
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6.3 Implementation

Our algorithm was implemented in the Java Programming Language and is composed

of approximately 10,000 lines of code which we wrote all components include the main

algorithm, supporting data structures for n-dimensional operations, an environment

simulator as well as a 3D visualizer and statistic capabilities. The algorithm is imple-

mented to perform searches in n dimensional dynamic environments. The Visualizer

is written as an applet using JOGL(Java Open GL) and can be see in Figure  6.3.

The source code for the classes described above can be found in the appendix.

Figure 6.3: Optimization Vizualizer

As the Cauchy Probability Distribution is not implemented in the j ava. util. Random

class, we implemented it in the ExtendedRandom class based on the geometric de-

scription found at [27].This class extends j ava.util. Random providing all the required

random functionality required by the system. The implementation of KD-Tree is a

generic point based KD-Tree that is described in the previous section. It implements

the Iterator interface that uses the FastArray class. The FastArray is class provides

very quick insert and delete operations on the assumption that the order of elements

is not important to the user. When an Iterator is needed, the KD-Tree may check

to see if the enumeration already has been performed. If not, then a FastArray is

created with the contents of the tree. Otherwise, the Iterator simply returns the

existing FastArray . This provides quick access to the objects within the KD-Tree

without having to traverse the tree.
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Figure 6.4: Toroidal Search Space.

In order to guard the KD-Tree against degeneration to O (n) performance, we

rebuild the tree at each iteration in an order based on two types of traversals. We

create an insertion list by probabilistically performing a depth first or breadth first

traveral of the tree. Once this is complete a the new tree is created from traversal

list.

We implement the search space in the Environment Class as a n dimensional

toroid(Figure 6.4)to minimize the effects of boundaries as described by  [21]. This has

the effect ensuring that the search process of agents can continue when the boundaries

of a dimension has been crossed.



Chapter 7

Testing and Discussion

The purpose of our tests are to evaluate the performance of our swarming algorithm

in dynamic environments as well as coming to an understanding if our cells mutation

property was successful in adapting to the environment. Continuing the research of

[21], who have both proposed state of the art algorithms in terms of performance

and flexibility for DO, we utilize the same test in order to establish our relative

performance. The test evaluates the tracking and flexibility of the algorithm in a

dynamic multi-modal environment. It is important to note that for each test we used

the same initial genome configuration. Any difference between the results are due the

effect of the mutation operations given the environment

7.1 Ackley Function

The Ackley function (Equation 7.1 is a multi-modal function that has been used by

Ramos [21] to gauge the quality of his SRS system.

f ( ^X ) = —20 exp(—0 . 2t
u
u v 1
n

n̂

i=1

(xi — ai ) 2 ) —exp( 1n
n̂

i=0

cos(2π (x i — ai )))+20+ e (7.1)

Here we will attempt to minimize the function over the domain —2 <  xi < 2 for n = 2.

As can been seen in figure  7.1, the minimum height of this function is zero. We also use

the linear update function to update the environment at each time step. This linear
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function acts on the environment by pushing the landscape by a vector at each time

step. The severity is calculated by ( magnitudeo f movement ) / (sizeo f environment ).

Figure 7.1: Ackley Function

Ramos defines the velocity v as the step size the environment takes compared to

his ant habitat size (100X100) and so, the velocity is v = severity* 100; We perform

a series of tests at v = 0, v=0.5, v = 1, v = 1.5, v=2, v = 3, v = 5, v=10, v=15,

v=30 and v=40 with an update frequency uf =0 and linear dynamics; And compare

against the best found and the average found. The results from the SRS are displayed

in Figure 7.2 in order to compare our results. It is important to note that we run

our test for about 1000 iterations, instead of the hundred that Ramos did. This in

order to discover if our swarm is adapting the environment. We believe that we can

assume that the Ramos’s swarm will continue act in the same manner as there no

mechanisms for mutation in his SRS. Our max population size for the test is set as

1000.

Figure 7.3 shows our results for velocities v=0. Our swarm was able to quickly

located the minima and stay on it. We see stability of the genome until iteration 200,

at which point we see mutation and a continual reduction in the average height which

coincides with a lowering of the genome’s average step rate. Essentially, the cells are

learning that they do not have to move very far to be successful. The result of best
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(a) Best Found 	 (b) Average

Figure 7.2: SRS on Ackley v=0.5, v = 1, v = 1.5, v=2, v = 3, v = 5, and v=10

found and the average are similar to those found by Ramos. We omit the results from

speed test for velocities v=0.5,1 as we continue to see similar results to v=0.

Our results begin to be more interesting at velocity v=2 (Figure  7.4) with

perfect tracking rates throughout the course of the run with a series of successful

mutations at iteration 80 to 144 that lower the average height. Here our results begin

to deviate from those found by Ramos as his swarm lost track of the optima twice

where our swarm perfectly tracked the optima.

At v=5 (Figure 7.5) initially the swarm experiences the same oscillatory be-

haviour as the SRS demonstrated in its test. However, unlike the SRS, successful

mutations occur at iteration 631 which result in good tracking until about iteration



Figure 7.3: Our Results on Ackley v=0

Figure 7.4: Our Results on Ackley v=2
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800 where it becomes near perfect. The genome mutation records show changes oc-

curring until iteration 813 where we see stabilization. This is echoed by the average

height converging on a height of three for the last 200 iterations.

At v=10, (Figure 7.6) where the SRS was unable to perform any tracking,

our swarm was able to mutate and successfully track the minima again showing the

strength of our approach. We see slow and steady mutations along the length of

the run with successful mutations occurring at iteration 500 and 900. Both series of

mutations allowed for a substantial increase in the tracking rates.

We conducted a series of tests outside the scope of what has been performed

on the SRS as our tracking was still much better then the SRS at the higher speeds.



Figure 7.5: Our Results on Ackley v=5

Figure 7.6: Our Results on Ackley v=10
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We examine the tracking at v = 15, 30 and 40.

At v=15, (Figure 7.7) our swarm continues to show it adaptability with excellent

tracking in the later portion of the run. We continued to see successful mutation that

enabled the swarm to track the minima across the landscape. It is important to note

that our swarm at v=15 is performing comparably if not better then the SRS at

v=5. And so, our swarm is tracking optima moving three times as quickly across the

environment.

At v=30, (Figure 7.8) the swarm continues to adapt to environment although

with less success then before. We see a series of expanding intervals where the swarm

appears to be tracking the optima only to loose it it later on. Strong evidence of this

occurs between the iterations 568-631 and then 735-864. This is also echoed with a
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Figure 7.7: Our Results on Ackley v=15

contraction of the average height around four during those periods.

Figure 7.8: Our Results on Ackley v=30

Finally our last test at v=40, (Figure  7.9) our the swarm we are unable to discern

the any tracking is occurring through the data. We do see a series of mutations around

iteration 400 onward but we are unable to distinguish if the mutations are successful.

Figure 7.10 examines the progression through space of the swarm in an example

of a v=5 where the swarm is successful in adapting to the environment. As we can

see the initial swarm at T=0, we have an explosion around the global minimum. At

T= 5 we see a wide plume trailing where cells are moving towards chemoattractant

signals in the environment. This continues until T = 50 where we begin to see a small
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Figure 7.9: Our Results on Ackley v=40

group of cells finally relocating the minimum. Once this occurs, we notice that the

plume following the minimum is much narrower.



(a) T=0 	 (b) T=5 	 (c) T=10 	 (d) T=15

(e) T=25 	 (f) T=50 	 (g) T=75 	 (h) T=150

(i) T=175 	 (j) T=225 	 (k) T=250 	 (l) T=500
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Figure 7.10: Swarm Progression on Ackley v=5

7.2 Summery

We were quite please with the results achieved above as it validates our rational that

characteristics of microbiological swarm can indeed be used in DO problems.

One key feature of the microbiological swarm is its adaptability to the environ-

ment. Adaptability plays an important role in the solutions to the Ackley function

tests allowing for better tracking rates then the SRS system. This serves as an im-

portant proof of concept that it is possible to use the principles of microbiological

evolution for the adaptability of SI algorithms. However, further research needs to be

conducted on increasing this adaptability while maintaining some genetic stability in
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the colony. We often found that a high mutation rate had a destabilizing effect on

the colony which produced no tracking in the environment. Unfortunately, too little

mutation did not appear to change the quality of the tracking of optima within the

scope of our tests. However, the mutation rates that we did choose were successful

in demonstrating the strength of adaptation in DO.

Another key feature of the swarm that played an important role is the envi-

ronmental pressure that served as the catalyst for change through both reproduction

and mutation. Implemented as a combination of relative ranking and scaling func-

tion H(Equation 5.6). It allowed for the immediate exploitation of the environment

through reproduction in high fitness areas. Furthermore, the long term effect of envi-

ronmental pressure produced greater exploitation of the environment throughout the

discovery of good traits for cells.

One our main concerns is the remarkable success of the algorithm in higher

velocities may not be generalizable outside of linear dynamic functions. We believe

that our results are partly due to the toroidal environment continually repeating the

same path of across the landscape. This allowed for the reinforcement of cells who

stayed within the path of the optima. In the case of environments with unpredictable

movements, learning may occur at a slower rate as the cells would not be continually

exposed to the path of the optima.



Chapter 8

Future Work and Conclusion

Future work could involve minimizing the effect of the toroidal borders by reducing

the severity of the environment and the step size by a similar ratio. In a sense, this

expands the toroid minimizing the effect of the boundaries. This should give those

doing the research more conclusive results on the adaptability of our technique. Fur-

thermore, more testing should be done on other multi-modal functions with different

environment update mechanisms.

Another avenue of future research could be the use of self-adaptive methods[1],

that allow for the mutation rates of the cells to be dynamically modified based on rate

of progress of the optimization. Here, the algorithm would start with high rates of

mutations and slowly increase or slow down the mutation rates based on the success

of the tracking.

Finally, the future work should also focus on using the swarm for real world

applications such as training of neural networks, scheduling tasks or perhaps as a form

of game AI. In games, AI opponents often have many parameters that change their

behaviour [22]. It would be possible to have our optimization algorithm tweak these

parameters in order to provide a dynamic scaling of difficulty to human opponents.

This could make games more engaging by not overwhelming or boring the player with

game play that is either to hard or too easy.

In conclusion, dynamic environments problems are generally difficult to opti-

mize as the solution space is in constant flux. As a result, the optimization algorithms

53
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must be capable of tracking optima through the search space that is continually chang-

ing. As microbiological organism live and perform a type of optimization know as

foraging, their characteristics of self-organization, adaptation and the process of nat-

ural selection have shown to be effective in our implementation of a DO algorithm.

We compared the effectiveness of our algorithm against another state of the

art algorithm in a series of tests on the multi-modal function Ackley. Our results

was very impressive outperforming the other algorithm in all tests of difficulty. At

lower speeds, our swarm performed comparably. However, as the speed increased, we

were able to track optima moving at speeds three time greater then what had been

previously achieved.

The main reason for the gain in performance was the mutation of the genome

contained in each cell. Successful mutations allowed cells to better track the optima

by the modification of their step size, viewing radius, maximum age, randomness of

movement as well as their sensitivity to attractants and repellents in the environment.

As the cells ability to locate and track the optima was increased through mutation,

their likelihood of reproducing was also increased. This resulted in the entire swarm

taking on successful characteristics that allowed it to better track moving optima

through the search space. The Microbiological inspired swarm continually showed its

adaptability in finding novel solutions to the dynamic optimization problem.

And so at the time of writing, with no known algorithms having performed

DO using a Microbiological inspired swarm. It would appear that this work is an

important and powerful proof of concept that has advanced the state of the art in

DO.
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Appendix A

Source Code

Within this section is listed some of the core source files used to implement our system.
Many files have been omitted due to their size. The complete source for this project
can be found at http://gav.log2n.ca/research/

A.1 Data Structures Package (ca. log2n.gav.ds)

A.1.1 KDTree Class

package ca. log2n.gav.ds.kdtree;
import java. util . Iterator;
import ca. log2n . gav. ds . FastArray ;
import ca. log2n . gav. maths. geometry. Point;
public class KDTree<T> {

KDNode root ;
int size ;
// private ArrayList list;
private FastArray <T> list ;
public KDTree () {

root = null ;

size = 0;
// list =new ArrayList();
list = new Fast Array <T> (200) ;

}
public void insert (Point point, T value) {

// insert into array.
list .add(value);
if (root== null ) {

root = new KDNode(0 , point , value) ;
size++;
return ;

}
put (root , point , value) ;
size++;

}
private void put (KDNode node, Point point, T value) {
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if (node. compareTo(point) > 0) // if the point is greater
then our node

//position
{

// move right
if (node. get Right() != null )

put (node. get Right () , point , value) ;
else 

node. setRight (new KDNode<T> (get Next Discriminator (node) ,
point ,
value));

} else if (node. compareTo (point) <= 0) {
// move left
if (node. getLeft () != null )

put (node. getLeft () , point , value) ;
else 

node. setLeft (new KDNode<T> (getNextDiscriminator (node) ,
point ,
value));

}
}
private int get Next Discriminator (KDNode node) {

if (node. discriminator + 1 >= node. getPoint () .getDim() )
return 0;

return node. discriminator + 1;
}
public Iterator <T> getRange ( Point point , double radius) {

// List <7> list = new LinkedList();
FastArray <T> alist = new FastArray<T> ( this  . size) ;
if (root != null )

rangeSearch(root , point, radius, alist) ;
return alist . iterator () ;

}
public FastArray <T> getRangeAsFastArray (Point point , double

radius) {
// List <7> list = new LinkedList();
FastArray <T> alist = new FastArray<T> ( this  . size) ;
if (root != null )

rangeSearch(root , point, radius, list);
return list;

}
private void rangeSearch (KDNode node, Point point, double 

radius ,
FastArray l is t) {

//is node within range?
if (radius > node. getPoint () . distanceFrom (point))

list .add (node . getValue () )

59
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// check left and right trees.
if (node. getLeft () != null )

if (node. compareLeft (point, radius)) // nodes to left are
within

// range
rangeSearch(node. getLeft () , point, radius, list) ;

if (node. getRight () != null )

if (node. compareRight (point, radius) )
rangeSearch (node. getRight () , point, radius, list);

}
public Iterator <T> BreadthFirstEnumeration() {

FastArray <T> list = new FastArray<T> ( this  . size) ;
if ( this. size > 0)

BreadthFirstTraversal (root , list) ;
return list .iterator () ;

}
public Iterator <T> DepthFirstEnumeration() {

FastArray <T> list = new FastArray<T> ( this  . size) ;
if ( this. size > 0)

DepthFirstTraversal (root, list);
return list . iterator () ;

}
private void Dept hF irstTraversal (KDNode node, FastArray <T> list

) {
if (node. getLeft () != null )

DepthFirstTraversal (node. get Left () , list) ;
if (node. getRight () != null )

DepthFirstTraversal (node. getRight () , list) ;
l is t . add ((T) node. get Value () ) ;

}
private void BreadthFirstTraversal (KDNode node, FastArray <T>

list) {
l is t . add ((T) node. get Value ()) ;
if (node. getLeft () != null )

DepthFirstTraversal (node. get Left () , list) ;
if (node. getRight () != null )

DepthFirstTraversal (node. getRight () , list) ;
}
public Iterator <T> getLastTraveral() {

return list . iterator () ;
}
public T[] toArrayBreadthFirstTraversal () {

FastArray <T> list = new FastArray<T> ( this  . size) ;
if ( this. size > 0)

BreadthFirstTraversal (root , list) ;
return (T [ ]) l i s t . toArray () ;

}
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public T[] toArrayDepthFirstTraversal() {
FastArray <T> list = new FastArray<T> ( this  . size) ;
if ( this. size > 0)

DepthFirstTraversal(root, list);
return (T [ ]) l i s t . toArray () ;

}
public int size () {

return size ;
}

}

A.1.2 KDNode Class

package ca. log2n.gav.ds.kdtree;
import ca. log2n . gav. maths. geometry. Point;
public class KDNode<T> {

int discriminator; // is the dimension used for comparing
Point point ; // is an point describing the location of the node
T value; // is the value of the node.
KDNode left;
KDNode right;
final int LEFT;
final int RIGHT;
/*

* ADNODE
*/

/**
* default constructor
*/

public KDNode( int discriminator , Point point , T value) {
this  . discriminator = discriminator ;
this  . point = point;
this. value = value;
left = null ;
right = null ;
LEFT = −1;
RIGHT = 1;

}
/**
* compares one node to another using the discriminant of the

current node.
*/

public int compareTo ( Point point) {
if ( this. point. get Discriminant (discriminator) < point

. get Discriminant (discriminator) )
return 1;
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if ( this. point. get Discriminant (discriminator) > point
. get Discriminant (discriminator) )

return — 1;
//not less then or greater must be equal
return 0;

}
/**
* compares a node within a range
*
* @param point
* 	 the center of the point
* @param radius
* 	 of the node
* @return true if the current node is within the radius of the

point, false
* 	 otherwise
*/

public int compareTo ( Point point , double radius) {
if ( this. point. get Discriminant (discriminator) + radius <

point
. get Discriminant (discriminator) )

return 1;
if ( this. point. get Discriminant (discriminator) + radius >

point
. get Discriminant (discriminator) )

return — 1;
//not less then or greater must be equal
return 0;

}
/**
* checks to see if a point is within a give radius from this

point
*
* @param point
* @param radius
* @return true is the point is within range of the radius to

the right,
* 	 false otherwise
*/

public boolean compareRight (Point point, double radius) {
if ( this. point. get Discriminant (discriminator) + radius <

point
. get Discriminant (discriminator) )

return false ;

return true ;

}
/**



* checks to see if a point is within a give radius from this
point

*
* @param point
* @param radius
* @return true is the point is within range of the radius to

the left ,
* 	 false otherwise
*/

public boolean compareLeft (Point point, double radius) {
if ( this. point. get Discriminant (discriminator) − radius >

point
. get Discriminant (discriminator) )

return false ;

return true ;

}
public void setDiscriminator ( int discriminator) {

this. discriminator = discriminator;
}
public int getDiscriminator () {

return discriminator ;
}
public Point getPoint () {

return point ;
}
public T getValue () {

return (T) value;
}
public void setPoint (Point point) {

this  . point = point ;
}
public void setValue (T value) {

this. value = value;
}
public void setLeft (KDNode left) {

this  . left = left;
}
public KDNode getLeft () {

return left;
}
public void setRight (KDNode right) {

this  . right = right;
}
public KDNode getRight () {

return right ;
}
public String toString () {
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return ” Discriminator: ” + this. discriminator + ” Point: ”
+ point . toString () + ” Value: ” + value . toString () ;

}
}

A.1.3 FastArray Class

package ca. log2n.gav.ds;
import java. util . Iterator;
public class FastArray <T> {

private T[ ] array;
/**
* represents the index of the last element in the array set to

public
* status so no method call is required.
*/

public int last;
public FastArray ( int size) {

array = (T[]) new Object [ size ] ;
last = −1;

}
public T at ( int index) {

return array [ index ] ;
}
/**
* \ simple add at tail
*
* @param o b j
*/

public void add (T obj) {
last++;
if (last < array . length) {

array[last] = obj;
} else {

doubleArray () ;
array [ last ] = obj ;

}
}
/**
* nice and quick delete operator assumes ordering of array is

not important
* places elements at position last to position i essentially

deleting i
* from the array.
*
* @param i
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* 	 the cell you want to delete
*/

public void delete ( int i) {
if (i > —1 && i < last + 1) {

array[i] = array [ last ] ;
last ——;

} else {
throw new IndexOutOfBoundsException(”INDEX: ” + i + ”LAST:

” + last);
}

}
public void doubleArray () {

T [ ] temp = (T [ ]) new Object [array. length * 2 ] ;
for ( int i = 0; i < array. length; i++)

temp [ i ] = array [ i ] ;
array = temp;

}
public int size () {

return last + 1;
}
public Iterator iterator () {

return new FastArrayIterator () ;
}
public T [ ] toArray () {

return array;
}
/**
* Iterator for the class.
*
* @author Gav
*
*/

public class FastArrayIterator <T> implements Iterator {
int in = —1;
public int size () {

return last + 1;
}
public boolean hasNext () {

return in < last;
}
public void remove() {

delete (in) ;
}
public T next() {

return (T) at(++in) ;
}

}
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A.2 Optimizer
Package (ca.log2n.gav. asrs. opt imizer)

A.2.1 Optimizer Class

package ca. log2n . gav. asrs . optimizer;
import java.util.ArrayList;
import java. util . Iterator;
import ca. log2n.gav.asrs .swarm. Cell;
import ca. log2n . gav. asrs . swarm. Genome;
import ca. log2n . gav. asrs . swarm. ChemoAttractants ;
import ca. log2n . gav. ds . kdtree . KDTree;
import ca. log2n . gav. maths. geometry. Point;
import ca. log2n . gav. maths. random. ExtendedRandom ;
import ca. log2n.gav.utils.log. Log;
import ca. log2n.gav. utils.log . Statistics;
public class Optimizer {

Log log;
boolean login = true ;

Environment env;
ExtendedRandom rand;
int iterationCount ;
int maxIterations ;
// Data Structures.
KDTree< Cell > cells ;
KDTree<ChemoAttractants > ChemoAttractants ;
// Opt Settings.
int maxcells ;
int mincells ;
// function options
boolean maximize;
boolean active ;
boolean usingChemoAttractant ;
boolean usingBirths ;
boolean usingCellDensity ;
boolean usingMutations ;
boolean usingChemoAttractantAbsorbtion;
boolean usingFixedIterations ;
boolean usingHarshness ;
boolean usingStats ;
Statistics stats;
double dPheremoneScale ;
double dDensityScale ;
double movementScale ;
double harshness;
// enviromnent stats.
double dMaxHeight ;
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;

double dMinHeight ;
double dDeltaHeight ;
Point pAvgPosition ;
double dAvg;
double dSum;
public Optimizer (Environment env, boolean maximize, int 

mincells ,
int maxcells) {

this. env = env;
// this. maximize = maximize; // / maximize or minimize??
this  . maximize = false ;
this. maxcells = maxcells;
this. mincells = mincells;
active = false  ;
cells = new KDTree< C ell > () ;
this. maxcells = maxcells;
ChemoAttractants = new KDTree<ChemoAttractants > () ;
// log = new Log () ;
usingChemoAttractant = true ;
usingBirths = true ;
usingCellDensity = false ;
usingMutations = true ;
usingChemoAttractantAbsorbtion = false ;
usingFixedIterations = false ;
usingHarshness = true ;
usingStats = false ;
// stats = new Statistics (env, this , ”trial 0”);
maxIterations = 400;
dPheremoneScale = 1;
dDensityScale = 1;
movement Scale = 1;
harshness = .7;
dMaxHeight = 0;
dMinHeight = 0;
dDeltaHeight = 0;
pAvgPosition = new Point (env. getEnvironmentSize () . getDim () )
dAvg = 0;
dSum = 0;
rand = new ExtendedRandom (System. nanoTime () ) ;
initialize () ;

}
public void initialize (Genome g) {

Point envSize = env. get Environment Size () ;
for ( int i = 0; i < mincells + 1; i++) {

Point randomPoint = new Point ( envSize . getDim ()) ;
for ( int j = 0; j < env. getEnvironmentSize () . getDim () ; j++)

{
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randomPoint. setDiscriminant (j , envSize . getDiscriminant (j )
∗ rand. nextFloat () ) ;

}
Cell cell = new Cell (randomPoint, g) ;
c e ll . name = i + ” ” ;
initPoint = randomPoint;
cells . insert (randomPoint , cell) ;

}
}
Point initPoint ;
public void initialize () {

initialize (new Genome() ) ;
}
public void update () {

if ( usingFixedIterat ions && maxIterations < iteration Count) {
return ;

}
iteration Count++;
env. update () ;
Point tempPosition = new Point (env. get Environment Size () .

getDim () )
double iterationSum = 0.0;
//update each cell position
//
// /looking at ChemoAttractants
// −> cell absorbs pheremone from env.
// /−> cell releases (relays) pheronome at area ( effect

lessen
//attraction to an area )
// /looking at cell density.
// −> avoid high areas??
// −> reproduce or not. ( too much density implies no

reproduction )
//(effect rep probabilty)
//having cells unable to move serves no purpose.
//reproduce if conditions adequate.
// −> mutation rate based on env.
// −> lower fitness mutate more with greater severity.
//updating ChemoAttractant
// −> radius increases as time passes
// −> strenght diminshes with time (based on radius) ?
//history of env.
//if change drastic??
//probability of death based on env? Not just Higher

mutation rates?
//REQUIRED
Iterator < Cell > cellArray ;

;
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Iterator <ChemoAttractants > pheArray;
// FOR EACH ChemoAttractant GET THE LIST OF CELLS WITHIN VIEW

.
//ADD SOME RANDOMNESS TO THE UPDATE SEQUENCE
//helps keep KD−Tree ’s balanced.
float ran = rand. nextFloat () ;
if (ran > 0.85) {

cellArray = cells . BreadthFirstEnumeration () ;
pheArray = ChemoAttractants. BreadthFirstEnumeration();

} else if (ran > 0.65) {
cellArray = cells . DepthFirstEnumeration () ;
pheArray = ChemoAttractants. DepthFirstEnumeration () ;

} else {
cellArray = cells . getLastTraveral () ;
pheArray = ChemoAttractants. getLastTraveral () ;

}
//CALCULATE FITNESS, and EXAMINE AREA FOR REPRODUCTION DUE

TO DENSITY
int count = 0;
int id = 0;
while ( cellArray . hasNext ()) {

double fitness ;
// get current cell
Cell currCell = cellArray . next () ;
// get its fitness
fitness = env. fitnessAt (currCell . getCurrentLocation ()) ;
currCell . setCurrentFitness (fitness);
iterationSum += fitness; // used for stats.
//ASSUME MIN AND MAX HEIGHT ARE THE VALUE OF THE FIRST

CELL.
if (count== 0) {

this. dMaxHeight = env. fitnessAt (currCell.
getCurrentLocation () ) ;

this. dMinHeight = env. fitnessAt ( currCell .
getCurrentLocation () ) ;

count++;
}
// do enviromnent check
if (fitness > this. dMaxHeight)

this  . dMaxHeight = fitness;
if (fitness < this. dMinHeight)

this  . dMinHeight = fitness;
}
dSum += iterationSum / ( float ) cells . size () ;
ArrayList <Cell > birthsArray = new ArrayList () ;
ArrayList <ChemoAttractants > new Chem oAttractant Drop Array =

new ArrayList () ;
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// /because the iterator in FastArray is implemented simply,
getting

//another iterator is very inexpensive
cellArray = cells . getLastTraveral () ;
pheArray = ChemoAttractants. getLastTraveral () ;
// caculate the delta height (delta max)
dDeltaHeight = this  . dMaxHeight — this. dMinHeight ;
while ( cellArray .hasNext ()) I

// grab object we need during this iteration
Cell currCell = cellArray . next () ;
Genome currGenome = currCell . getGenome () ;
Point movementVector = currCell . getMovementVector () ;
Point currPosition = currCell . getCurrentLocation () ;
// / the three invluences to our movement vector.
Point pChemoAttractantVector = new Point ( env .

get Environment Size ()
. getDim () )

Point pDensityVector = new Point (env. get Environment Size () .
getDim () ) ;

double rating;
//IF WE ARE MAXIMIZING THE ENVIRONMENT or min — c a l c u l a t e

the
//rating for the cell.
if (maximize)

rating = ( currCell . getCurrentFitness () — this   . dMinHeight)
/ this. dDeltaHeight ;

else 
rating = ( this. dMaxHeight — currCell. get Current Fitness () )

/ this. dDeltaHeight ;
//evaluate location and drop ChemoAttractant..
if (rand. nextFloat () < rating) // ChemoAttractant
I

ChemoAttractants p = currCell. get ChemoAttract ant Drop();
p. setCurrValue (p. getInitialValue () * rating) ;
newChemoAttractantDropArray. add (p) ;

I
// construct chemoattractant vector
if ( usingChemoAttractant) I

Iterator <ChemoAttractants > phe = ChemoAttractants.
getRange (
currCell . getCurrentLocation () , currCell . getGenome ()

. getViewingRadius () )
pChemoAttractantVector = new Point (env. get Environment Size

()
. getDim () ) ;

while ( phe . hasNext ()) I
ChemoAttractants p = phe . next () ;

;

;
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// get vector from cell to ChemoAttractant
Point diff = p. getLocation () . clone();
diff . sub ( currPosition) ;
diff . normalize() ; // bring back to 1
diff. scale (p. getCurrValue () ) ; // adjust scale
//appropriately with
//randomness
pChemoAttractantVector. add ( d if f) ;

}// end inner while
pChemoAttractantVector. normalize () ;
pChemoAttractantVector. scale (currCell . getGenome ()

. getChemoAttractantSensitivity () )
currCell . setPChemoAttractantVector ( pChemoAttractantVector

);// keeps
// track

//of last
//ChemoAttractant
//movement (
//DOES NOT
//INFLUENCE
//MOVEMENT! !)

}//end if there are more cells.
//construct cell density vector( equivalent of

chemorepellent.
if ( usingCellDensity) {

Iterator < Cell > near = cells.getRange(currCell
. getCurrentLocation () , currCell . getGenome ()
. getViewingRadius () )

Point diff;
pDensityVector = new Point (env. get Environment Size () .

getDim () )
while (near. hasNext () ) {

diff = currPosition . clone () ;
diff . sub (near . next () . getCurrentLocation ()) ;
pDensityVector . add( diff) ;

}
}
// update position
pChemoAttractantVector. scale (dPheremoneScale) ;
movementVector. add ( pChemoAttractantVector) ;
pDensityVector. scale (dDensityScale) ;
movementVector. add ( pDensityVector) ;
// get gaussian movement
currCell. moveGaussian ( currCell . getGenome ()

. getRandomnessOfMovement () )
// scale and move

;

;

;

;
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movementVector. scale ( ( currCell . getGenome () . getMovementStep
()))

currCell . setCurrentLocation (env. addPoints ( currCell
. getCurrentLocation () , currCell . getMovementVector () ) ) ;

movementVector. scale (30) ;
if ( usingBirths) {

currCell . liveALittle () ;
double probabilityOfLife = (currCell.

getLifeStepsRemaining () / currCell . getGenome () .
getLifeSteps () ) ;

//double probabilityOfLife = rating;
if ( usingHarshness) {

probabilityOfLife = harsh(harshness , probabilityOfLife)
;

}
if (rand. nextFloat () > probabilityOfLife) {

// kill off cell.
if ( cells . size () > this  . mincells) {

if ( usingBirths )
currCell . setLifeStepsRemaining (0) ;

}
}
double birthsPerCell = 1;
//if (usingHarshness) {
//birthsPerCell = (maxcells — cells . size ())
/// (double) cells . size ();
// }
for ( int i = 0; i < birthsPerCell ; i++) {

if (rand. nextFloat () < rating) // reproduce???
{

if ( this  . maxcells > cells . size () + birthsArray . size ()
) {

Cell offSpring = currCell . clone () ;
//create new offspring
//mutate offspring as required.
//add to bithing array
off Spring. setCurrentLocation (env. addPoints (

offSpring . getCurrentLocation () , env
. getRandomPoint (currGenome

. getDBirthRadius () ) ) )
// mutate offspring
if (usingMutations )

if (rand. nextFloat () < harsh (10 , 1 — rating)) //
mutate

//cell
{

off Spring. getGenome () . mutate() ;

;

;
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}
//add into birthArray
birthsArray. add( off Spring) ;

}
}

}
}
// mutate based on environmental stress
if (usingMutations )

if (rand. nextFloat () < harsh (4, 1 − rating)) // mutate
cell

{
currGenome . mutate ( ) ;

}
//if (login)
// log. log (”Before: ”+currCell . getCurrentLocation () + ”

Moving : ” +
//movement Vector);
//currCell. set CurrentLocation (env. addPoints (currCell.

getCurrentLocation () ,
//currCell. getMovement Vector ()));
//if (login)
// log. log (”After: ”+currCell. get CurrentLocation ());
//
//tempPosition. add (currCell. getCurrentLocation ());

}
if (usingStats )

stats . collectStats () ;
//log.log(”////////////////////////”);
// log. log(” Cells: ”+ this. cells. size() + ” Births: ” +
//birthsArray. size ());
//log . log (”Min: ”+ this. dMinHeight+”,” + this . env.

getDMinFound ()) ;
//log . log (”Max: ”+ this. dMaxHeight+”,”+ this. env. getDMaxFound

() ) ;
//log. log (”Delta: ”+ this.dDeltaHeight);
//log. log(”ChemoAttractant: ” + this. ChemoAttractants. size ()

+ ” new:
//+” +
//newChemoAttractantDropArray. size ());
//GET READY FOR NEXT ITERATION
cellArray = cells . getLastTraveral () ;
//
//MOVEMENT VECTOR OF EACH CELL MUST BE SET TO ZERO
//DELETE ANY DEAD CELLS
//
KDTree<Cell > tempTree = new KDTree() ;
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while ( cellArray .hasNext ()) {
Cell currCell = cellArray . next () ;
if ( currCell . getLifeStepsRemaining () > 0)

tempTree . insert ( currCell . getCurrentLocation () , currCell) ;
}
for ( int i = 0; i < birthsArray. size () ; i++)

tempTree . insert ( birthsArray . get ( i) . getCurrentLocation () ,
birthsArray. get ( i)) ;

cells = tempTree ;
pheArray = ChemoAttractants. getLastTraveral () ;
KDTree<ChemoAttractants > tempChemoAttractants = new KDTree() ;
while (pheArray. hasNext () ) {

ChemoAttractants p = pheArray. next () ;
if (p. getCurrValue () > p. getValueLimit ()) {

p. update () ;
tempChemoAttractants . insert (p. getLocation () , p) ;

}
}
for ( int i = 0; i < newChemoAttractantDropArray. size () ; i++)

{
tempChemoAttractants. insert (newChemoAttractantDropArray. get

( i )
. getLocation () , newChemoAttractantDropArray. get ( i)) ;

}
ChemoAttractants = tempChemoAttractants ;
// update average positions
pAvgPosition. scale (0) ; // reset Avg point
tempPosition . scale (1 / ( float  ) cells . size ()) ; // get avg
pAvgPosition . add ( tempPosition) ;

}
public void doIteration ( int n) {

iteration Count = 0;
this  . usingFixedIterations = true ;

this. maxIterations = n;
while ( this. hasMoreIterations () )

update () ;
}
public Iterator get Cells () {

return cells . getLastTraveral () ;
}
public Iterator getChemoAttractant () {

return ChemoAttractants. getLastTraveral () ;
}
public boolean isActive () {

return active ;
}
public void performStep () {
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;

update () ;
active = false ;

}
public void resetOpt () {

cells = new KDTree< C ell > () ;
ChemoAttractants = new KDTree<ChemoAttractants > () ;
// log = new Log () ;
rand = new ExtendedRandom(System. currentTimeMillis () )
initialize () ;
iteration Count = 0;
dSum = 0;

}
public void resetOpt (Genome g) {

cells = new KDTree< C ell > () ;
ChemoAttractants = new KDTree<ChemoAttractants > () ;
// log = new Log () ;
rand = new ExtendedRandom (System. nanoTime () )
initialize (g);
iteration Count = 0;
dSum = 0;
// stats = new Statistics (env, this , ”trial 0”);

}
public void setActive ( boolean active) {

this  . active = active ;
}
public boolean getActive () {

return this. active ;
}
public void updateCells () {
}
public Point createRandomMovement (Cell cell) {

Point point;
i f ( c e ll . getGenome () . getRandomnessOfMovement () > rand.

nextDouble () ) {
point = env. getRandomPoint (1) ;
point. normalize () ;
return point;

}
Point p = new Point (env. get Environment Size () . getDim() )
return p;

}
public double getAvg() {

return dSum / ( float ) iteration Count ;
}
public double getDeltaHeight () {

return dDeltaHeight ;

;

;

}



public void setDeltaHeight ( double deltaHeight) {
dDeltaHeight = deltaHeight ;

}
public double getMaxHeight () {

return dMaxHeight ;
}
public void setMaxHeight ( double maxHeight) {

dMaxHeight = maxHeight ;
}
public double getMinHeight () {

return dMinHeight ;
}
public void setMinHeight ( double minHeight) {

dMinHeight = minHeight ;
}
public int getIterationCount () {

return iterationCount ;
}
public void setIterationCount ( int iterationCount) {

this. iterationCount = iterationCount;
}
public boolean hasMoreIterations () {

if ( usingFixedIterations && maxIterations > iterationCount)
return true ;

return false  ;
}
public int getMaxcells () {

return maxcells ;
}
public void setMaxcells ( int maxcells) {

this  . maxcells = maxcells ;
}
public boolean isMaximize () {

return maximize;
}
public void setMaximize ( boolean maximize) {

this  . maximize = maximize;
}
public int getMincells () {

return mincells ;
}
public void setMincells ( int mincells) {

this  . mincells = mincells ;
}
public boolean isUsingBirths () {

return usingBirths ;
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public void set UsingBirths ( boolean usingBirths) {
this. usingBirths = usingBirths;

}
public boolean isUsingCellDensity () {

return usingCellDensity ;
}
public void setUsingCellDensity ( boolean usingCellDensity) {

this. usingCellDensity = usingCellDensity ;
}
public boolean isUsingChemoAttractant () {

return usingChemoAttractant;
}
public void setUsingChemoAttractant ( boolean 

usingChemoAttractant) {
this. usingChemoAttractant = usingChemoAttractant;

}
public boolean isUsingMutations () {

return usingMutations;
}
public void set UsingMutations  ( boolean usingMutations) {

this. usingMutations = usingMutations;
}
public Genome getInitialGenome () {

return new Genome () ;
}
public boolean isUsingChemoAttractantAbsorbtion () {

return usingChemoAttractantAbsorbtion;
}
public void setUsingChemoAttractantAbsorbtion (

boolean usingChemoAttractantAbsorbtion) {
this. usingChemoAttractantAbsorbtion =

usingChemoAttractantAbsorbtion;
}
public int getCellCount () {

return cells . size () ;
}
public int getChemoAttractantCount () {

return ChemoAttractants. size () ;
}
public Point getPAvgPosition () {

return pAvgPosition ;
}
public void setPAvgPosition (Point avgPosition) {

pAvgPosition = avgPosition ;
}
public int get MaxIterations () {

return maxIterations ;
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}
public void setMaxIterations (int maxIterations) {

this  . maxIterations = maxIterations ;
}
public boolean isUsingFixedIterations () {

return usingFixedIterations ;
}
public void set UsingFixedIterat ions (boolean 

usingFixedIterations) {
this  . usingFixedIterations = usingFixedIterations ;

}
public double harsh (double scale, double prob) {

return Math. exp ( scale * prob) / Math. exp ( scale) ;
}
public double Invharsh(double scale, double prob) {

return scale * Math. log (prob * 100) / Math. log (100) ;
}

}

A.2.2 Environment Class

package ca. log2n . gav. asrs . optimizer;
import java. util . Iterator;
import java. util . Random;
import java. util . Scanner;
import java. util . regex. Pattern;
import ca. log2n . gav. ds . kdtree . KDNode;
import ca. log2n . gav. ds . kdtree . KDTree;
import ca. log2n . gav. maths. functions . Function;
import ca. log2n . gav. maths. geometry. Point;
public class Environment {

Function fitnessFunction ;
double dMaxFound ;
double dMinFound ;
Point movementVector;
Point translationVector ;
Point environment Size;
Point randomMovementVector;
Point tempPoint ;
Random rand;
KDTree<EnvironmentModifier > environment Mod ifiers ;
KDTree cells ;
double dSeverity ;
double d Randomness OfEnv ;
double dRandomnessOfMovementVector ;
int iUpdateFrequency ;



int count;
/**
* default constructor
*
* @param environmentSize
*

	

	 point with the dimensions of the env from the
origin

* @param FitnessFunction
*

	

	 a function to evalutate any give location within
the env.

* @param c e ll s
* 	 a tree containing the cells in the environment.

?? NEEDED?
*/

public Environment (Point environment Size, Function
FitnessFunction /**

* ,
* KDTree
* cells*
*/

) {
this. environment Size = environment Size;
this. fitnessFunction = FitnessFunction;
movementVector = new Point (environment Size . getDim () ) ;
translationVector = new Point (environment Size . getDim () ) ;
randomMovementVector = new Point ( environmentSize . getDim ()) ;
dRandomnessOfMovementVector = 0.0;
dRandomnessOfEnv = 0.01;
environmentModifiers = new KDTree<EnvironmentModifier > () ;
// this. cells = cells;
dSeverity = 1;
iUpdateFrequency = 0;
count = 0;
rand = new Random(System. currentTimeMillis () ) ;
dMaxFound = −99999999999d;
dMinFound = 999999999999d;

}
public double fitnessAt (Point point) {

// calc fitness from raw env
tempPoint = this. addPoints (point , translationVector) ;
// add point to translationVector
double fitness = fitnessFunction. evaluate (tempPoint) ;
//scale env due to modifiers.
//this is ugly and needs to be changed.
if (environment Mod ifiers. size () > 0) {

Iterator it = environmentModifiers . BreadthFirstEnumeration
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() ;



double effect = 0.0;
while (it .hasNext ()) {

effect += (( EnvironmentModifier) (it . next ()) )
. calculateEffect (point);

}
// return fitness + fitness* effect;
fitness *= effect ;

}
if (fitness > this  . dMaxFound)

dMaxFound = fitness;
if (fitness < this  . dMinFound)

dMinFound = fitness;
return fitness ;

}
public void update() {

if (count < iUpdateFrequency) {
count++;
return ;

} else {
count = 0;

}
// update where we are moving the environment
translationVector = addPoints(translationVector ,

movementVector) ;
if ( this. dRandomnessOfEnv > rand. nextFloat ()) {

if (rand. next Double () < this. dRandomnessOfEnv) {
Point center = this. getRandomPoint (1) ;
double radius = rand. nextDouble () / 100;
double scale = 0.5;
double severity = 3.2;
this. environmentModifiers

.insert (center , new EnvironmentModifier(center ,
radius ,
scale , severity)) ;

}
}
translationVector = addPoints(translationVector ,

this. randomMovementVector) ;
KDTree tmpTree = new KDTree () ;
Iterator it = this  . environment Mod ifiers .

BreadthFirstEnumeration () ;
while (it . hasNext ()) {

//update point
//add into new tree
EnvironmentModifier m = ( EnvironmentModifier) it . next () ;
Point tmpPoint = m. center;
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tmpPoint = addPoints (tmpPoint , this. translationVector) ; //
update

// point
m. center = tmpPoint;
tmpTree. insert (tmpPoint, m); // insert into tree

}
environmentModifiers = tmpTree;

}
/**
* Adds points together and ensures the result is within the

range of the
* search space
*
* @param point 1
* @param point2
* @return
*/

public Point addPoints ( Point point1 , Point point2) {
Point newPoint = point1 . clone () ;
newPoint . add ( point2) ;
for ( int i = 0; i < environment Size. getDim () ; i++) {

if (newPoint . getDiscriminant (i) > environmentSize
. getDiscriminant (i) )

newPoint . setDiscriminant (i , newPoint . getDiscriminant (i )
− environment Size. getDiscriminant ( i)) ;

else if (newPoint . getDiscriminant (i) < 0)
newPoint . setDiscriminant (i , newPoint . getDiscriminant (i )

+ environment Size. getDiscriminant ( i ) ) ;
}
return newPoint ;

}
public void addEnvironmentModifier (Point center , double radius ,

double scale , double severity) {
this. environmentModifiers . insert (center , new

EnvironmentModifier (
center , radius , scale , severity)) ;

}
/**
* sets the dimension of the environment.
*
* @param size
*/

public void setEnvironment Size (Point size) {
this. environment Size = size;
this  . fitnessFunction . setDimensions ( size) ;

}
/**



* sets the dimension of the environment.
*
* @param size
*/

public void setEnvironmentSize( String text) {
this  . environment Size . setDiscriminants (text ) ;

}
public Point getEnvironmentSize () {

return this. environment Size;
}
public void set Fit nessFunct ion (Function function) {

this. fitnessFunction = function;
this. environment Size = function. get Dimensions () ;

}
public Function get FitnessFunction () {

return this. fitnessFunction ;
}
/**
* sets the amont of movement per update in the environment
*
* @param point
* 	 the amount of movement
*/

public void setMovementVector (Point point) {
this. movementVector = point;

}
/**
* sets the amont of movement per update in the environment
*
* @param point
* 	 the amount of movement
*/

public void setMovementVector ( String text) {
this. movementVector. setDiscriminants (text) ;

}
/**
* gets the amount of movement per update to the environment.
*
* @return
*/

public Point getMovementVector () {
return this. movementVector;

}
public void set TranslationVector (Point point) {

this. translationVector = point;
}
public Point get TranslationVector () {
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return this. translationVector ;
}
/*
* double dRandomnessOfEnv; double dSeverity; double
* dRandomessOfMovementVector;
*/

public void set Randomness OfEnv  ( double var) {
dRandomnessOfEnv = var;

}
public double getdRandomnessOfEnv() {

return dRandomnessOfEnv;
}
public void set Severity ( double var) {

dSeverity = var;
}
public double getdSeverity () {

return dSeverity;
}
public void setRandomessofMovementVector  ( double var) {

dRandomnessOfMovementVector = var;
}
public double getdRandomessofMovementVector () {

return dRandomnessOfMovementVector ;
}
public int getUpdateFrequency () {

return iUpdateFrequency ;
}
public void setUpdateFrequency ( int updateFrequency) {

this. iUpdateFrequency = updateFrequency;
}
public Point get RandomPoint  ( double scale) {

Point n = new Point ( this. environment Size. getDim () )
for ( int i = 0; i < n. getDim () ; i++) {

n. setDiscriminant (i , environment Size. getDiscriminant (i )
* rand. nextDouble () * scale) ;

if (rand. nextBoolean () )
n. setDiscriminant (i , environment Size. getDiscriminant ( i) *

−1) ;
}
return n;

}
/**
* resets the environment movement and translation , randomness

to zero.
*
*/

public void resetEnv () {

;
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this. movementVector = new Point (0, 0) ;
this. translationVector = new Point (0, 0) ;
this. dRandomnessOfMovementVector = 0;
this. environmentModifiers = new KDTree<EnvironmentModifier > ()

;
}
public double getDMaxFound() {

return dMaxFound;
}
public void setDMaxFound( double maxFound) {

dMaxFound = maxFound ;
}
public double getDMinFound() {

return dMinFound;
}
public void setDMinFound( double minFound) {

dMinFound = minFound ;
}

}
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A.3 Swarm Package (ca. log2n. gav. asrs. swarm)

A.3.1 Cell Class

package ca. log2n . gav. asrs . swarm;
import java.util.ArrayList;
import java. util . Iterator;
import java . u t i l . Random;
import ca. log2n . gav. maths. geometry. Point;
import ca. log2n . gav. maths. random. ExtendedRandom;
public class Cell {

double dCurrFitness;
Point pCurrLocation;
Point pMovementVector;
Point pOldMovementVector;
Point pChemoAttractantVector ;
Point pOldVector ;
ExtendedRandom rand;
public String name;
double iLifeStepsRemaining ;
Genome genome;
ArrayList ChemoAttractantList ;
/**
* constructs default cell for 2d movement with a default

genome.
*
*/

public Cell() {
this  . dCurrFitness = 0;
this. pCurrLocation = new Point (0, 0) ;
this. pMovementVector = new Point (0, 0) ;
this  . genome = new Genome () ;
this  . iLifeStepsRemaining = genome. getLifeSteps () ;
this  . rand = new ExtendedRandom (System. nanoTime () )
pOldMovementVector = new Point (0 , 0) ;
pChemoAttractantVector = new Point (0 , 0) ;

}
/**
* Constructor for a given point with a given Genome.
*
* @param currLocation
* @param genome
*/

public Cell(Point currLocation, Genome genome) {
this. dCurrFitness = 0;
this. pMovementVector = new Point (0, 0) ;
pCurrLocation = currLocation;

;



this  .genome = genome;
this  . iLifeStepsRemaining = genome. getLifeSteps () ;
this  . rand = new ExtendedRandom (System. nanoTime ( )) ;
this  . rand. setB (0.2) ;
pChemoAttractantVector = new Point (0, 0) ;

}
public Cell (Point currLocation , Genome genome, ExtendedRandom

rand) {
this. dCurrFitness = 0;
this. pMovementVector = new Point (0, 0) ;
pCurrLocation = currLocation ;
this  . genome = genome;
this  . iLifeStepsRemaining = genome. getLifeSteps () ;
this. rand = rand;
pChemoAttractantVector = new Point (0, 0) ;

}
/**

* STORES A FITNESS VALUE... DOES NOT RE−EVALUTAT THE FITNESS
FROM THE

* ENVIROMNENT!!!!!!!
*
* @param val
* 	 the currnet fitness
*/

public void set CurrentFitness(double val) {
this. dCurrFitness = val;

}
public double getCurrentFitness () {

return this. dCurrFitness;
}
public void set CurrentLocation (Point val) {

this. pCurrLocation = val;
}
public Point getCurrentLocation () {

return this. pCurrLocation;
}
public void setMovementVector (Point val) {

this. pMovementVector = val;
}
public Point getMovementVector () {

return this. pMovementVector;
}
public void reset MovementVector () {

this. pMovementVector. reset () ;
}
/**

*
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∗ @return the cells genome.
∗/

public Genome getGenome () {
return genome;

}
public void setGenome(Genome genome) {

this  . genome = genome;
}
public ArrayList getChemoAttractantList () {

return ChemoAttractantList;
}
public void set ChemoAttractantList (ArrayList

ChemoAttractantList) {
this. ChemoAttractantList = ChemoAttractantList;

}
public void add ChemoAttractant ( ChemoAttractants p) {

this. ChemoAttractantList. add (p) ;
}
public Iterator get ChemoAttractantIterator () {

return this. ChemoAttractantList . iterator () ;
}
public ChemoAttractants get ChemoAttract ant Drop () {

return new ChemoAttractants ( this. pCurrLocation . clone() ,
genome

.get ChemoAttractantRadius () , genome

. getChemoAttractantDropRate () , genome

.get ChemoAttractantRemovalLimit () , genome

. getChemoAttractantExpansionRate () ) ;
}
public double getLifeStepsRemaining () {

return iLifeStepsRemaining;
}
public void setLifeStepsRemaining( double lifeStepsRemaining) {

iLifeStepsRemaining = lifeStepsRemaining ;
}
public void liveALittle () {

this. iLifeStepsRemaining --;
}
public Point get OldMovementVector () {

return pOldMovementVector ;
}
public void setOldMovementVector (Point oldMovementVector) {

pOldMovementVector = oldMovementVector ;
}
public Cell clone() {

return new Cell ( this. pCurrLocation. clone () , genome. clone () )
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/**
* performs a movement according to a gaussian normal

distrbution for each
* dimension.
*
*/

public void moveGaussian () {
moveGaussian (1.0) ;

}
/**
* performs a movement according to a gaussian normal

distrbution for each
* dimension.
*
*/

public void move Gaussian ( double scale) {
for ( int i = 0; i < this. pMovementVector. getDim () ; i++)

pMovementVector. setDiscriminant (i , pMovementVector
. getDiscriminant (i )
+ rand. nextGaussian () * scale) ;

pMovementVector. normalize () ;
}
public Point get POldMovementVector () {

return pOldMovementVector ;
}
public void setPOldMovementVector (Point oldMovementVector) {

pOldMovementVector = oldMovementVector ;
}
public Point getPOldVector () {

return pOldVector ;
}
public void setPOldVector (Point oldVector) {

pOldVector = oldVector ;
}
public Point getPChemoAttractantVector () {

return pChemoAttractantVector ;
}
public void setPChemoAttractantVector (Point

ChemoAttractantVector) {
pChemoAttractantVector = ChemoAttractantVector ;

}
}

A.3.2 Genome Class

package ca. log2n . gav. asrs . swarm;
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import j ava . u t i l. Random ;
import ca. log2n . gav. maths. functions . ProbabilityFunction;
import ca. log2n . gav. maths. geometry. Point;
import ca. log2n . gav. maths. random. ExtendedRandom ;
public class Genome {

//TO THE GENOME
//ChemoAttractant SETTINGS
/**
* controls how much ChemoAttractant is to be dropped for in an

optimal
* condition
*/

double dChemoAttractantDropRate ;
double dMutationRate ChemoAttractantDropRate ;
/**
* controls how fast our ChemoAttractant is expand.
*/

double dChemoAttractantExpansionRate ;
double dMutationRate ChemoAttractantExpansionRate ;
/**
* controls the level when a ChemoAttractant should be removed
*/

double dChemoAttractantRemovalLimit ;
double dMutationRate ChemoAttractantRemovalLimit ;
/**
* controls how much a cell will absob from its environment;
*/

double dChemoAttractantAbsortionRate ;
double dMutationRate ChemoAttractantAbsortionRate ;
/**
* controls how much a cell will absob from its environment;
*/

double dChemoAttractantRadius ;
double dMutationRate ChemoAttractantRadius;
/**
* controls how sensitive the cell is to ChemoAttractants

around it.
*/

double dChemoAttractantSensitivity;
double dMutationRate ChemoAttractant Sensitivity;
//REPRODUCTION
/**
* controls how likely a cell is to reproduce given the cell

density in its
* viewing radius.
*/

double dCellDensity ReproductionRate ;
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double dMutationRate CellDensity ReproductionRate;
/**
* controls how far a offspring can be born from its parent.
*/

double dBirthRadius ;
double dMutationRate BirthRadius ;
//LIFE SPAN
/**
* controls how long a cell is likely to live .. how many steps.
*/

double iLifeSteps ;
double dMutationRate iLifeSteps ;
//MOVEMENT
/**
* The Randomness of a Cells Movement
*/

double dRandomnessOfMovement ;
double dMutationRate Randomness OfMovement ;
ProbabilityFunction functionRandomMovement;
/**
* The basic amount of a movement for any direction
*/

Point pMovementStep;
double dMutationRate MovementStep ;
/**
* How far a cell can see.
*/

double dViewingRadius ;
double dMutationRate ViewingRadius ;
public Genome () {

dChemoAttractantDropRate = 10; // 0
dMutationRate ChemoAttractantDropRate = 0.00000000; // 1
dChemoAttractantExpansionRate = 0.5; // 2
dMutationRate ChemoAttract ant ExpansionRate = 0.0;// 3
dChemoAttractantRemovalLimit = 2.01; // 4
dMutationRate ChemoAttractantRemovalLimit = 0.00; // 5
dChemoAttractantAbsortionRate = 0.00; // 6
dChemoAttractantRadius = 1; // 7
dMutationRate ChemoAttractantRadius = 0.000000; // 8
dMutationRate ChemoAttractantAbsortionRate = 0.001;// 9
dChemoAttractantSensitivity = 0.001; // 10
dMutationRate ChemoAttractant Sensitivity = 0.0001; // 11
dCellDensity ReproductionRate = 8; // 12
dMutationRate CellDensity ReproductionRate = 0.0;// 13
dBirthRadius = 0.01; // 14
dMutationRate BirthRadius = 0.001; // 15
iLifeSteps = 5; // 16



dMutationRate iLifeSteps = 0.001; // 17
dRandomnessOfMovement = 0.01; // 18
dMutationRate RandomnessOfMovement = 0.001; // 19
this. functionRandomMovement = new ProbabilityFunction () ;
pMovementStep = new Point (0.020, 0.020) ; // 21
dMutationRate Movement Step = 0.01; // 22
dViewingRadius = 0.10; // 23
dMutationRate ViewingRadius = 0.001; // 24

}
/**
* @param ChemoAttractantDropRate
* @param mutationRate ChemoAttractantDropRate
* @param ChemoAttractantExpansionRate
* @param mutationRate ChemoAttractantExpansionRate
* @param ChemoAttractantRemovalLimit
* @param mutationRate ChemoAttractantRemovalLimit
* @param ChemoAttractantAbsortionRate
* @param mutationRate ChemoAttractantAbsortionRate
* @param ChemoAttractantRadius
* @param mutationRate ChemoAttractantRadius
* @param ChemoAttractantSensitivity
* @param mutationRate ChemoAttractantSensitivity
* @param cellDensity ReproductionRate
* @param mutationRate CellDensity ReproductionRate
* @param birthRadius
* @param mutationRate BirthRadius
* @param lifeSteps
* @param mutationRate iLifeSteps
* @param randomness OfMovement
* @param mutationRate RandomnessOfMovement
* @param fun ctionRandomMovement
* @param movementStep
* @param mutationRate MovementStep
* @param viewingRadius
* @param mutationRate ViewingRadius
*/

public Genome( double ChemoAttractantDropRate ,
double mutationRate ChemoAttractantDropRate ,
double ChemoAttractantExpansionRate ,
double mutationRate ChemoAttractantExpansionRate ,
double ChemoAttractantRemovalLimit ,
double mutationRate ChemoAttractantRemovalLimit ,
double ChemoAttract ant AbsortionRate ,
double mutationRate ChemoAttractantAbsortionRate ,
double ChemoAttractantRadius ,
double mutationRate ChemoAttractantRadius ,
double ChemoAttractantSensitivity ,
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double mutationRate ChemoAttractantSensitivity ,
double cellDensity ReproductionRate ,
double mutationRate CellDensity ReproductionRate ,
double birthRadius , double mutationRate BirthRadius ,
double lifeSteps , double mutationRate iLifeSteps ,
double randomnessOfMovement ,
double mutationRate Randomness OfMovement ,
ProbabilityFunction functionRandomMovement , Point

movementStep ,
double mutationRate MovementStep , double viewingRadius ,
double mutationRate ViewingRadius) {

super () ;
dChemoAttractantDropRate = ChemoAttractantDropRate ;
dMutationRate ChemoAttractantDropRate =

mutationRate ChemoAttractantDropRate ;
dChemoAttractantExpansionRate = ChemoAttractantExpansionRate ;
dMutationRate ChemoAttract ant ExpansionRate =

mutationRate ChemoAttractantExpansionRate ;
dChemoAttractantRemovalLimit = ChemoAttractantRemovalLimit ;
dMutationRate ChemoAttractantRemovalLimit =

mutationRate ChemoAttractantRemovalLimit ;
dChemoAttractantAbsortionRate = ChemoAttractantAbsortionRate ;
dMutationRate ChemoAttractantAbsortionRate =

mutationRate ChemoAttractantAbsortionRate ;
dChemoAttractantRadius = ChemoAttract ant Radius;
dMutationRate ChemoAttractantRadius =

mutationRate ChemoAttract ant Radius;
dChemoAttractantSensitivity = ChemoAttractantSensitivity ;
dMutationRate ChemoAttractantSensitivity =

mutationRate ChemoAttractantSensitivity;
dCellDensity ReproductionRate = cellDensity ReproductionRate;
dMutationRate CellDensity ReproductionRate =

mutationRate CellDensity ReproductionRate;
dBirthRadius = birthRadius ;
dMutationRate BirthRadius = mutationRate BirthRadius;
iLifeSteps = lifeSteps ;
dMutationRate iLifeSteps = mutationRate iLifeSteps;
dRandomnessOfMovement = randomness OfMovement;
dMutationRate RandomnessOfMovement =

mutationRate Randomness OfMovement ;
this. functionRandomMovement = functionRandomMovement ;
pMovementStep = movementStep ;
dMutationRate MovementStep = mutationRate MovementStep;
dViewingRadius = viewingRadius ;
dMutationRate ViewingRadius = mutationRate ViewingRadius;

}
public void mutate() {
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ExtendedRandom rand = new ExtendedRandom (System. nanoTime () ) ;
if (rand. nextDouble () < this. dChemoAttractantDropRate)

set ChemoAttractantDropRate (dChemoAttractantDropRate + .01
* rand. next CauchyZeroOne ()) ;

if (rand. nextDouble () < this.
dMutationRate ChemoAttractantSensitivity)

setChemoAttractantSensitivity ( this  .
dChemoAttractantSensitivity
+ 0.001 * rand. nextCauchyZeroOne ()) ;

if (rand. nextDouble () < this.
dMutationRate CellDensity ReproductionRate)

setCellDensity ReproductionRate  ( this.
dCellDensity ReproductionRate
+ this. dCellDensity ReproductionRate
* rand. next CauchyZeroOne () ) ;

if (rand. nextDouble() < this. dMutationRate BirthRadius )
setDBirthRadius ( this. dBirthRadius + 0.01 * rand.

next CauchyZeroOne () ) ;
if (rand. nextDouble () < this. dMutationRate iLifeSteps )

setLifeSteps ( this. iLifeSteps + this   . iLifeSteps
* rand. next CauchyZeroOne ()) ;

if (rand. nextDouble () < this.
dMutationRate RandomnessOfMovement )

setRandomnessOfMovement (Math. abs  ( this. dRandomnessOfMovement
+ .01
* rand. next CauchyZeroOne ()) )

if (rand. nextDouble () < this. dMutationRate ViewingRadius)
set ViewingRadius ( this. dViewingRadius + this. dViewingRadius

* rand. next CauchyZeroOne () ) ;
for ( int i = 0; i < pMovementStep . getDim () ; i++)

if (rand. nextDouble () < dMutationRate MovementStep) {
double r = pMovementStep . getDiscriminant (i) + .1

* rand. next CauchyZeroOne () ;
if (r < 0.005)

r = 0.005;
else if (r > .05)

r = .05;
getMovementStep () . setDiscriminant (i , r) ;

}
}
public double getCellDensity ReproductionRate () {

return dCellDensity ReproductionRate;
}
public void setCellDensity ReproductionRate (

double cellDensity ReproductionRate) {
dCellDensity ReproductionRate = cellDensity ReproductionRate ;

;

}



public double getMutationRate CellDensity ReproductionRate () {
return dMutationRate CellDensity ReproductionRate;

}
public void setMutationRate CellDensity ReproductionRate(

double mutationRate CellDensity ReproductionRate) {
dMutationRate CellDensity ReproductionRate =

mutationRate CellDensity ReproductionRate;
}
public double getMutationRate iLifeSteps() {

return dMutationRate iLifeSteps;
}
public void setMutationRate iLifeSteps  ( double 

mutationRate iLifeSteps) {
dMutationRate iLifeSteps = mutationRate iLifeSteps;

}
public double getMutationRate MovementStep() {

return dMutationRate MovementStep;
}
public void setMutationRate MovementStep  ( double 

mutationRate MovementStep) {
dMutationRate MovementStep = mutationRate MovementStep;

}
public double getMutationRate ChemoAttractantAbsortionRate() {

return dMutationRate ChemoAttractantAbsortionRate;
}
public void setMutationRate ChemoAttractantAbsortionRate(

double mutationRate ChemoAttractantAbsortionRate) {
dMutationRate ChemoAttractantAbsortionRate =

mutationRate ChemoAttractantAbsortionRate;
}
public double getMutationRate ChemoAttractantDropRate() {

return dMutationRate ChemoAttractantDropRate;
}
public void setMutationRate ChemoAttractantDropRate(

double mutationRate ChemoAttractantDropRate) {
dMutationRate ChemoAttractantDropRate =

mutationRate ChemoAttractantDropRate;
}
public double getMutationRate ChemoAttractantExpansionRate () {

return dMutationRate ChemoAttractantExpansionRate ;
}
public void setMutationRate ChemoAttractantExpansionRate (

double mutationRate ChemoAttractantExpansionRate) {
dMutationRate ChemoAttract ant ExpansionRate =

mutationRate ChemoAttractantExpansionRate ;
}
public double getMutationRate ChemoAttractantRemovalLimit () {
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return dMutationRate ChemoAttractantRemovalLimit;
}
public void setMutationRate ChemoAttractantRemovalLimit(

double mutationRate ChemoAttractantRemovalLimit) {
dMutationRate ChemoAttractantRemovalLimit =

mutationRate ChemoAttractantRemovalLimit;
}
public double getMutationRate Randomness OfMovement () {

return dMutationRate RandomnessOfMovement ;
}
public void setMutationRate Randomness OfMovement (

double mutationRate Randomness OfMovement) {
dMutationRate RandomnessOfMovement =

mutationRate Randomness OfMovement ;
}
public double getMutationRate ViewingRadius () {

return dMutationRate ViewingRadius;
}
public void setMutationRate ViewingRadius ( double 

mutationRate ViewingRadius) {
dMutationRate ViewingRadius = mutationRate ViewingRadius;

}
public double get ChemoAttractantAbsortionRate () {

return dChemoAttractantAbsortionRate ;
}
public void set ChemoAttractantAbsortionRate (

double ChemoAttractantAbsortionRate) {
dChemoAttractantAbsortionRate = ChemoAttractantAbsortionRate;

}
public double getChemoAttractantDropRate () {

return dChemoAttractantDropRate ;
}
public void set ChemoAttractantDropRate  ( double 

ChemoAttractantDropRate) {
dChemoAttractantDropRate = ChemoAttractantDropRate ;

}
public double getChemoAttractantExpansionRate () {

return dChemoAttractantExpansionRate ;
}
public void setChemoAttractantExpansionRate (

double ChemoAttractantExpansionRate) {
dChemoAttractantExpansionRate = ChemoAttractantExpansionRate ;

}
public double get ChemoAttractantRemovalLimit () {

return dChemoAttractantRemovalLimit ;
}
public void set ChemoAttractantRemovalLimit (
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double ChemoAttractantRemovalLimit) {
dChemoAttractantRemovalLimit = ChemoAttractantRemovalLimit ;

}
public double getRandomnessOfMovement () {

return dRandomnessOfMovement ;
}
public void setRandomnessOfMovement ( double randomnessOfMovement

) {
dRandomnessOfMovement = randomness OfMovement;

}
public double getViewingRadius () {

return dViewingRadius ;
}
public void setViewingRadius  ( double viewingRadius) {

dViewingRadius = viewingRadius ;
}
public ProbabilityFunction get FunctionRandomMovement () {

return functionRandomMovement;
}
public void setFunctionRandomMovement (

ProbabilityFunction functionRandomMovement) {
this. functionRandomMovement = functionRandomMovement;

}
public double getDBirthRadius () {

return dBirthRadius ;
}
public void set DBirthRadius  ( double birthRadius) {

dBirthRadius = birthRadius ;
}
public double getDMutationRate BirthRadius() {

return dMutationRate BirthRadius;
}
public void setDMutationRate BirthRadius ( double 

mutationRate BirthRadius) {
dMutationRate BirthRadius = mutationRate BirthRadius;

}
public double getLifeSteps () {

return iLifeSteps ;
}
public void setLifeSteps ( double lifeSteps) {

iLifeSteps = lifeSteps ;
}
public Point getMovementStep () {

return pMovementStep ;
}
public void setMovementStep (Point movementStep) {

pMovementStep = movementStep ;
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}
public double getChemoAttractantRadius () {

return dChemoAttract ant Radius;
}
public void set ChemoAttractantRadius  ( double 

ChemoAttractantRadius) {
dChemoAttractantRadius = ChemoAttractantRadius ;

}
public double getMutationRate ChemoAttractantRadius() {

return dMutationRate ChemoAttractantRadius;
}
public void setMutationRate ChemoAttractantRadius(

double mutationRate ChemoAttractantRadius) {
dMutationRate ChemoAttractantRadius =

mutationRate ChemoAttractantRadius ;
}
public double getMutationRate ChemoAttractantSensitivity() {

return dMutationRate ChemoAttractantSensitivity;
}
public void setMutationRate ChemoAttractantSensitivity(

double mutationRate ChemoAttractantSensitivity) {
dMutationRate ChemoAttractantSensitivity =

mutationRate ChemoAttractantSensitivity;
}
public double getChemoAttractantSensitivity () {

return dChemoAttractantSensitivity ;
}
public void set ChemoAttractantSensitivity ( double 

ChemoAttractantSensitivity) {
dChemoAttractantSensitivity = ChemoAttractantSensitivity ;

}
public Genome clone() {

Point movement = pMovementStep. clone () ;
return new Genome(dChemoAttractantDropRate ,

dMutationRate ChemoAttractantDropRate ,
dChemoAttractantExpansionRate ,
dMutationRate ChemoAttractantExpansionRate ,
dChemoAttractantRemovalLimit ,
dMutationRate ChemoAttract ant RemovalLimit ,
dChemoAttractantAb sort ionRate ,
dMutationRate ChemoAttractantAbsortionRate ,
dChemoAttractantRadius ,

dMutationRate ChemoAttractantRadius ,
dChemoAttractantSensitivity ,
dMutationRate ChemoAttractantSensitivity ,
dCellDensity Re product ionRate ,
dMutationRate CellDensity ReproductionRate , dBirthRadius ,
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dMutationRate BirthRadius , iLifeSteps ,
dMutationRate iLifeSteps , dRandomnessOfMovement ,
dMutationRate Randomness OfMovement ,

functionRandomMovement ,
movement, dMutationRate MovementStep , dViewingRadius ,
dMutationRate ViewingRadius) ;

}
public Genome PointToGenome(Point p, ProbabilityFunction

function) {
Genome a = new Genome (p. getDiscriminant (0) , p. getDiscriminant

( 1 ) , p
. getDiscriminant (2) , p. getDiscriminant (3) ,
p. getDiscriminant (4) , p. getDiscriminant (5) , p

.getDiscriminant (6) , p. getDiscriminant (7) , p

.getDiscriminant (8) , p. getDiscriminant (9) , p

.getDiscriminant (10) , p. getDiscriminant (11) , p

.getDiscriminant (12) , p. getDiscriminant (13) , p

.getDiscriminant (14) , p. getDiscriminant (15) , ( int ) p

.getDiscriminant (16) , p. getDiscriminant (17) , p

.getDiscriminant (18) , p. getDiscriminant (19) , function
,

new Point (p. getDiscriminant (21) , p. getDiscriminant (21)) ,
p

.getDiscriminant (22) , p. getDiscriminant (23) , p

.getDiscriminant (24)) ;
return a;

}
public double createMutatedAllele (Random rand, double var) {

double variation = rand. nextDouble () − rand. nextGaussian () ;
return var ;

}
public String toString () {

return dChemoAttractantDropRate + ” , ”
+ dMutationRate ChemoAttract ant DropRate + ” , ”
+ dChemoAttractantExpansionRate + ” ,”
+ dMutationRate ChemoAttractantExpansionRate + ” , ”
+ dChemoAttractantRemovalLimit + ” ,”
+ dMutationRate ChemoAttract ant RemovalLimit + ” , ”
+ dChemoAttract ant Ab sort ionRate + ” ,”
+ dMutationRate ChemoAttr act ant Ab sort ionRate + ” , ”
+ dChemoAttractantRadius + ” ,”
+ dMutationRate ChemoAttractantRadius + ” , ”
+ dChemoAttractantSensitivity + ” ,”
+ dMutationRate ChemoAttractant Sensitivity + ” , ”
+ dCellDensity ReproductionRate + ” ,”
+ dMutationRate CellDensity ReproductionRate + ” , ”
+ dBirthRadius + ” ,” + dMutationRate BirthRadius + ” , ”
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+ iLifeSteps + ” ,” + dMutationRate iLifeSteps + ” , ”
+ dRandomnessOfMovement + ” , ”
+ dMutationRate Randomness OfMovement + ” , ”
+ functionRandomMovement + ” ,” + pMovementStep + ” , ”
+ dMutationRate MovementStep + ” ,” + dViewingRadius + ” , ”
+ dMutationRate ViewingRadius ;

}
}

A.3.3 ChemoAttractants Class

package ca. log2n . gav. asrs . swarm;
import ca. log2n . gav. maths. geometry. Point;
public class ChemoAttractants {

Point pLocation ;
double dRadius ;
double dValue ;
double dMinStrength ;
double dRadiusStep ;
boolean bAlive ;
double dCurrValue ;
/**
* Creates a Pheromone that mimics an expanding ring of cAMP

whose value at
* a point is given by the area of the cAMP. NOTE** ASSUMES

DIMENSION OF
* PHEROMONE IS EQUAL IN ALL DIRECTIONS.
*
* @param location
* 	 where the pheromone is released from
* @param radius
* 	 the initial radius
* @param value
* 	 the Value/Strengh of the pheromone. Note that

this is not
* 	 effected by updates.
* @param minStrength
* @param radius Step
*/

public ChemoAttractants (Point location , double radius, double
initialValue ,
double minStrength , double radius Step) {

pLocation = location ;
dRadius = radius ;
dValue = initialValue ;
dMinStrength = minStrength;



dRadiusStep = radiusStep ;
bAlive = true ;

dCurrValue = dValue / ( dRadius * dRadius) ;
}
/**
* updates the value of the pheromone
*
*/

public void update () {
if ( isAlive ()) {

dRadius += dRadiusStep;
dCurrValue = dValue / ( dRadius * dRadius) ;

}
}
public boolean isAlive () {

return dCurrValue > this. dMinStrength;
}
public double getRadius () {

return dRadius;
}
public void set Radius ( double radius) {

dRadius = radius;
}
public double getValueLimit () {

return dMinStrength;
}
public void set MinStrength  ( double radiusLimit) {

dMinStrength = radiusLimit ;
}
public double getRadiusStep () {

return dRadiusStep;
}
public void setRadiusStep ( double radiusStep) {

dRadiusStep = radiusStep ;
}
public double getInitialValue () {

return dValue;
}
public void setInitialValue ( double value) {

dValue = value;
}
public Point getLocation () {

return pLocation ;
}
public void set Location (Point location) {

pLocation = location;

101

}



102

public double getCurrValue () {
return dCurrValue ;

}
public void set CurrValue ( double currValue) {

dCurrValue = currValue ;
}

}
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A.4 Maths Package (ca. log2 n. gav. mat hs)

A.4.1 Function Interface Class

package ca . log2n .gav . maths . functions;
import ca. log2n . gav. maths. geometry. Point;
public interface Function {

public double evaluate ( Point point) ;
public void setDimensions (Point point) ;
public Point get Dimensions();

}

A.4.2 Ackley Function Class

package ca . log2n . gav . maths . functions;
import ca. log2n . gav. maths. geometry. Point;
public class Ackley extends FitnessFunction {

double a = 0;
double b = 1;
double xfactor = 0.50;
double yfactor = 0.50;
int n;
double max;
double min;
double base ;
/**
* default constructor.
*
*/

public Ackley() {
super () ;
dimensions = new Point (1 , 1) ;
double x = 1;
double y = 1;
min = 0;

}
public Ackley (Point dimensions) {

super (dimensions) ;
this. dimensions = dimensions;

}
/**
* @param pointN
* 	 a point value between zero and 1.
* @return a value for the function between zero and 1.
*/

public double evaluate (Point point) {
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if ( point .getDim () > 2) {
// throw exception

}
double x = point. getDiscriminant (0) ;
x = ScaleDouble (x, 0, 1, —2, 2) ;
double y = point. getDiscriminant (1) ;
y = ScaleDouble (y, 0, 1, —2, 2) ;
double z;
z = —20

* Math.exp(—0.2
* Math. sqrt (0.5 * (Math.pow(x, 2) + Math.pow(y, 2))) )

— Math. exp (0.5 * (Math. cos ((x) * 2 * Math. PI) + Math. cos
((y)
* 2 * Math. PI))) + 20 + 2.71828;

return (z);
}
private double ScaleDouble (double val, double fromMin, double

fromMax ,
double toMin, double toMax) {

double distanceFrom = fromMax — fromMin;
double distanceTo = toMax — toMin;
double ratio = distanceTo / distanceFrom;
return toMin + ratio * val ;

}
public void setA (double a) {

this.a = a;
}
public void setB (double b) {

this.b = b;
}

}

A.4.3 Point Class

package ca. log2n . gav. maths. geometry;
import java. text.NumberFormat;
import java. util . Scanner;
import java. util . regex. Pattern;
public class Point implements Comparable {

private double [] n;
public Point (int dimension) {

n = new double[ dimension];
}
public Point ( Point aVect) {

n = new double [ aVect . getDim () ];
for (int i = 0; i < aVect. getDim () ; i++)



n [ i ] = aVect . get Discriminant ( i ) ;
}
public Point (double x, double y) {

n = new double [ 2 ] ;
n[0] = x;
n[1] = y;

}
public Point(double x, double y, double z) {

n = new double [ 3 ] ;
n[0] = x;
n[1] = y;
n[2] = z;

}
public Point (double [ ] n) {

this.n = n;
}
/**

*
* @returns the dimension of the Vector.
*/

public int getDim () {
return n. length;

}
public double get Discriminant (int dimension) {

if (dimension > —1 && dimension < getDim()) {
return n [ dimension ] ;

} else {
// throw IndexOutOfBoundsException;
return — 1;

}
}
public void set Discriminant (int dimension, double value) {

if (dimension > —1 && dimension < getDim()) {
n[dimension] = value;

} else {
// throw IndexOutOfBoundsException;
return;

}
}
/**
* sets the dimension of the environment through a space or

coma delimited
* string
*
* @param size
*/

public boolean setDiscriminants (String text) {
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Scanner scan = new Scanner (text);
scan. useDelimiter (Pattern. compile (” ,* |” + scan. delimiter ()) )

;
int dimcount = 0;
while (scan. hasNextDouble ()) {

if (dimcount < this. getDim ()) {
this. setDiscriminant (dimcount , scan. nextDouble ()) ;

} else 
return false ;

dimcount++;
}
return true ;

}
public String getDiscriminantsString () {

String s = ”” ;
for (  int i = 0; i < n. length — 1; i++) {

s += n[i] + ” , ” ;
}
if (n. length > 0)

s += n[n.length — 1];
return s;

}
/**
* adds this vector to vector passed through and returns new

Vector.
*
* @param aVect
* @return
*/

public void add ( Point aVect) {
for ( int i = 0; i < n. length; i++)

n [ i ] += aVect. get Discriminant ( i ) ;
}
public void sub ( Point aVect) {

for ( int i = 0; i < n. length; i++)
n[i] —= aVect . get Discriminant (i) ;

}
public double distanceFrom (Point aVect) {

double sum = 0.0 ;
double dif;
for ( int i = 0; i < aVect. getDim () ; i++) {

dif = n[i] — aVect . getDiscriminant (i) ;
sum += dif * dif;

}
return Math. sqrt (sum) ;

}
public void normalize() {



double sizeSq = 0;
for ( int i = 0; i < getDim() ; i++)

sizeSq += n [ i ] * n [ i ] ;
//if zero vector, set alignment to 0
if (sizeSq== 0) {

for ( int i = 0; i < getDim() ; i++)
n[i] += 0;

return ;

}
// scale vector to be a unit vector
double scaleFactor = 1.0f / Math. sqrt ( sizeSq) ;
for ( int i = 0; i < getDim () ; i++)

n[i] *= scaleFactor ;
}
public double magnitude() {

double sum = 0;
for ( int i = 0; i < getDim () ; i++)

sum += n[i] * n[i];
return Math. sqrt (sum) ;

}
public void scale ( double ratio) {

for ( int i = 0; i < getDim () ; i++)
n[i] *= ratio;

}
public void scale(Point ratio) {

for ( int i = 0; i < getDim () ; i++)
n[i] *= ratio . get Discriminant (i) ;

}
public void set Magnitude ( double size) {

this. normalize () ;
this  . scale ( size ) ;

}
/**
* sets the point to the origin
*
*/

public void reset() {
for ( int i = 0; i < n. length; i++) {

n[i] = 0;
}

}
public int compareTo (Object vectorn) {

Point a = (Point) vectorn ;
if ( getDim () != a . getDim () )

;
{

// throw exception;
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}
boolean equal = false ;

for ( int i = 0; i < getDim () ; i++) {
if (n[i] > a. getDiscriminant (i)) {

if (n[i]== a. getDiscriminant (i) )
equal = true ;

else 
return −1;

}
}
if (equal)

return 0;
else 

return 1;
}
public boolean equals(Object aVect) {

Point a = (Point) aVect ;
for ( int i = 0; i < a. getDim () ; i++)

if (n[i] != a. getDiscriminant (i) )
return false ;

return true ;

}
public String toString () {

NumberFormat form = NumberFormat. getInstance () ;
form. setMaximumFractionDigits (3) ;
form. setMinimumFractionDigits (3) ;
String string = ”” ;
for ( int i = 0; i < n. length; i++) {

string += (”x” + i + ” : ” + form. format (n [ i ]) + ” ” ) ;
}
return ” Point” + n. length + ” : ” + this. hashCode () + ” (” +

string
+ ” ) ” ;

}
public Point clone() {

double array[] = new double [n. length];
for ( int i = 0; i < n. length; i++)

array[i] = n[i];
return new Point ( array) ;

}
}

A.4.4 Extended Random Class

package ca. log2n . gav. maths. random;
import j ava . u t i l. Random ;



public class ExtendedRandom extends Random {
/** use serial Version UID from JDK 1.1 for interoperability */
static final long serialVersionUID = 7905348978240129619L;
private boolean haveNextNext Cauchy = false ;

private double b;
public ExtendedRandom() {

super () ;
b = 1;

}
public ExtendedRandom ( long seed) {

super
(
 seed );

b = 1;
}
/**
* returns a Cauchy Random Var as implemented through the

geometric
* description described of the Cauchy function at
* http ://mathworld. wolfram. com/CauchyDistribution . html.
*
* @return double cauchy based on the current b value .
*/

synchronized public double nextCauchy () {
long l = (( long ) (next (26) ) << 27) + next (27) ;
double ranDouble = l / ( double ) (1L << 53) ;
double rad = ScaleDouble (ranDouble , 0, 1, —1.57, 1.56) ; //

get random
//double
//between —PI/2
//and PI/2

return Math.tan(rad) * b; // returns it cauchy Val.
}
/**

*
* @param theta
* 	 a radian angle.
* @return
*/

synchronized public double next Cauchy ( double theta) {
return Math.tan(theta) * b; // returns it cauchy Val.

}
synchronized public double next CauchyZeroOne () {

return nextCauchy () / nextCauchy (1.56) ;
}
synchronized private double ScaleDouble ( double val , double

fromMin ,
double fromMax, double toMin, double toMax) {

double distanceFrom = fromMax — fromMin;
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double distanceTo = toMax − toMin;
double ratio = distanceTo / distanceFrom;
return toMin + ratio ∗ val ;

}
public double getB () {

return b;
}
public void setB ( double b) {

this. b = b;
}

}
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A.5 Utils Package (ca. log2n. gav. mat hs)

A.5.1 Statistics Class

package ca. log2n.gav.utils.log;
import java. io . File ;
import java. util .ArrayList;
import java. util . Iterator;
import java. util . Scanner;
import java. util . regex. Pattern;
import ca. log2n . gav. asrs . optimizer. Environment;
import ca. log2n . gav. asrs . optimizer. Optimizer;
import ca. log2n.gav.asrs .swarm. Cell;
import ca. log2n . gav. asrs . swarm. Genome;
import ca. log2n . gav. maths. geometry. Point;
import ca. log2n.gav.maths. utils.MathUtils;
public class Statistics {

Iterator <Cell > cells ;
Log l;
Environment env;
Optimizer opt;
public Statistics (Environment env, Optimizer opt, String output

) {
this.env = env;
this.opt = opt;
File out = new File (output) ;
while (true) {

if (out. exists ()) {
Scanner s = new Scanner (out. getName () )
String name = s. next () ;
int id = s. nextInt () ;
output = name + ” ” + (id + 1) ;
out = new File (output) ;

} else {
break;

}
}
l = new Log(new File (output) , l .APPEND) ;
String header = ” Function: ” + env. get FitnessFunction () .

get Class ()
+ ” , Objective: ”
+ (opt. isMaximize () ? ”maximize” : ” minimize” ) + ” ,

Severity : ”
+ env. getdSeverity () + ” , Randomness: ”
+ env. getdRandomnessOfEnv () + ” , Update Frequency”
+ env. getUpdateFrequency () + ” , Max Iteration”

;
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+ opt. getMaxIterations () + ” , Max Cells : ” + opt.
getMaxcells ()

+ ” , Min Cells : ” + opt. getMincells () + ” , Reproduction:
”

+ opt. isUsingBirths () + ” , ChemoAttractants : ”
+ opt. isUsingChemoAttractant () + ” , ChemoRepellents : ”
+ opt. isUsingCellDensity () + ” , Mutation: ”
+ opt. isUsingMutations () ;

l . log (header) ;
l . log (” Stats”) ;
String columns = ”iteration , ” ;
// avg position , var
for ( int i = 0; i < env. get Environment Size () . getDim() ; i++)

columns = addToString (columns, ” avg pos x” + i ) ;
for ( int i = 0; i < env. get Environment Size () . getDim() ; i++)

columns = addToString (columns, ” var pos x” + i) ;
columns = addToString (columns, ”avg height”) ;
columns = addToString (columns, ”var height”) ;
columns = addToString (columns, ”std dev height”) ;
columns = addToString (columns, ”max height”) ;
columns = addToString (columns, ”min height”) ;
columns = addToString (columns, ”% Optimized”) ;
// avg position , var
for ( int i = 0; i < env. get Environment Size () . getDim() ; i++)

columns = addToString (columns, ” avg step x” + i) ;
for ( int i = 0; i < env. get Environment Size () . getDim() ; i++)

columns = addToString (columns , ” var step x” + i ) ;
for ( int i = 0; i < env. get Environment Size () . getDim() ; i++)

columns = addToString (columns, ” stddev step x” + i) ;
columns = addToString (columns, ”avg random movement”) ;
columns = addToString (columns, ”var random movement”) ;
columns = addToString (columns, ” std dev random movement”) ;
columns = addToString (columns, ”avg sensitiviy”) ;
columns = addToString (columns, ”var sensitiviy”) ;
columns = addToString (columns, ”std dev sensitiviy”);
columns = addToString (columns, ”avg distance from the genome”

) ;
l . log (columns) ;

}
// optimized
double [] avg position;
double [] var position;
double avg height;
double var height;
// genome
double avg ranmovement ;
double var ranmovement ;
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double [] avg stepsize ;
double [] var stepsize;
double avg senstivity ;
double var senstivity ;
double avg life ;
double var life ;
public void collectStats () {

if (!opt. hasMoreIterations ()) {
l . close () ;
return ;

}
Iterator < Cell > cells = opt. getCells () ;
ArrayList <double [] > positions = new ArrayList <double [] > () ;
for ( int i = 0; i < env. get Environment Size () . getDim() ; i++)

positions. add (new double [ opt. getCellCount () ]) ;
double [] height = new double [ opt. getCellCount () ];
double [ ] movementran = new double [opt. getCellCount () ];
double [] sensitivity = new double [opt. getCellCount () ];
double max = −999999999999d;
double min = 9999999999999d;
ArrayList <double [] > stepsize = new ArrayList <double [] > ();
for ( int i = 0; i < env. get Environment Size () . getDim() ; i++)

stepsize . add (new double [ opt. getCellCount () ]) ;
// //////////////////////////////
//collect data
// /////////////////////////////
int count = 0;
while (cells . hasNext ()) {

Cell currCell = cells . next () ;
Point position = currCell . getCurrentLocation () ;
for ( int i = 0; i < env. getEnvironmentSize () . getDim () ; i++)

{
//add positions into array
positions . get ( i ) [count ] = position . getDiscriminant ( i) ;

}
// get height
height [count] = currCell . getCurrentFitness () ;
if (height [count] > max)

max = height [ count ];
if (height [count] < min)

min = height [ count];
//collect genome stats
Genome g = currCell . getGenome () ;
movementran [count] = g . getRandomnessOfMovement () ;
sensitivity [count] = g. getChemoAttractantSensitivity () ;
Point step = g. getMovementStep();



114

for ( int i = 0; i < env. getEnvironmentSize () . getDim () ; i++)
{

//add positions into array
stepsize . get (i) [count] = step. get Discriminant (i) ;

}
count++;

}//end collecting data about cells.
//info collected now calculated avg, var and std dev
//optimized
//get avg position
double sum[] = new double [env. getEnvironmentSize () . getDim () ] ;
for ( int i = 0; i < env. getEnvironmentSize () . getDim() ; i++) {

for ( int j = 0; j < count; j++) {
// add positions into array
double array[] = ( double []) positions . get (i) ;
sum [ i ] += positions. get (i) [j ] ;

}
}
avg position = new double [env. getEnvironmentSize () . getDim () ] ;
for ( int i = 0; i < env. getEnvironmentSize () . getDim() ; i++) {

avg position [ i ] = sum [ i ] / ( double ) (count + 1.0d) ;
}
var position = new double [env. getEnvironmentSize () . getDim () ]
for ( int i = 0; i < env. getEnvironmentSize () . getDim() ; i++) {

double array[] = ( double []) positions . get (i) ;
var position[i] = MathUtils. variance (array) ;

}
// contruct string
String out = ”” ;
for ( int i = 0; i < env. getEnvironmentSize () . getDim() ; i++)

out += avg position [ i ] + ” , ” ;
for ( int i = 0; i < env. getEnvironmentSize () . getDim() ; i++)

out += var position [ i ] + ” , ” ;
//HEIGHT
this. avg height = MathUtils . avg( height) ;
out = addToString (out , avg height) ;
out = addToString (out , MathUtils . variance (height) ) ;
out = addToString (out , MathUtils . standard deviation (height) ) ;
out = addToString (out , max) ;
out = addToString (out , min) ;
double percent = opt. isMaximize () ? max / env. getDMaxFound ()

:min
/env. getDMinFound () ;

out = addToString (out , percent) ;
// /GENOME FEATURES
//get average step
sum = new double [ env. getEnvironmentSize () . getDim () ] ;

;
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for ( int i = 0; i < env. getEnvironmentSize () . getDim() ; i++) {
for ( int j = 0; j < count; j++) {

sum[i] += stepsize .get (i)[j];
}

}
avg stepsize = var position = new double [env.

getEnvironmentSize ()
. getDim () ]

for ( int i = 0; i < env. getEnvironmentSize () . getDim() ; i++) {
avg stepsize [ i ] = sum [ i ] / (count + 1.0d) ;

}
var stepsize = new double [env. getEnvironmentSize () . getDim () ]
for ( int i = 0; i < env. getEnvironmentSize () . getDim() ; i++) {

double array[] = ( double []) positions . get (i) ;
var stepsize [ i ] = MathUtils. variance (array) ;

}
double [] dev stepsize = new double [ env. getEnvironmentSize () .

getDim () ]
for ( int i = 0; i < env. getEnvironmentSize () . getDim() ; i++) {

dev stepsize [ i ] = Math. sqrt ( var stepsize [ i ] ) ;
}
// contruct string
for ( int i = 0; i < env. getEnvironmentSize () . getDim() ; i++)

out += avg stepsize [ i ] + ” ,” ;
for ( int i = 0; i < env. getEnvironmentSize () . getDim() ; i++)

out += var stepsize [ i ] + ” , ” ;
for ( int i = 0; i < env. getEnvironmentSize () . getDim() ; i++)

out += dev stepsize [ i ] + ” , ” ;
//random movement, sens and life
avg ranmovement = MathUtils . avg(movementran) ;
out = addToString (out, avg ranmovement) ;
var ranmovement = MathUtils . variance (movementran) ;
out = addToString (out, var ranmovement) ;
out = addToString (out , MathUtils . standard deviation (

movementran) ) ;
avg senstivity = MathUtils . avg(sensitivity) ;
;
out = addToString (out , avg senstivity) ;
var senstivity = MathUtils . variance( sensitivity) ;
out = addToString (out , var senstivity) ;
out = addToString (out , MathUtils . standard deviation(

sensitivity)) ;
Genome g = opt. getInitialGenome () ;
double ran d i f = avg ranmovement — g . getRandomnessOfMovement

() ;

;

;

;

double sens dif = avg senstivity — g.
get ChemoAttractantSensitivity () ;
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double x dif = avg stepsize [0] — g. getMovementStep () .
get Discriminant (0) ;

double y dif = avg stepsize [1] — g.getMovementStep() .
get Discriminant (1) ;

//double distance from genome = DistanceGenome.magnitude();
out = addToString (out , Math. sgrt ( ran dif * ran dif + sens dif

* sens dif + x dif * x dif + y dif * y dif)) ;
l . log (opt . getIterationCount () + ” ,” + out) ;
for ( int i = 0; i < movementran . length; i++) {

//System. out. println (stepsize . get (0) [i]+”, ”+ stepsize . get
(1 )[i]);

}
//double var avgposition;
//double avg height;
//double var height;
//
// //genome
//double avg ranmovement;
//double var ranmovement;
//double avg stepsize;
//double var stepsize;
//double avg sens tivity;
//double var senstivity;
//double avg life;
//double var life;

}
public String addToString ( String string , String addition) {

string += addition + ” ,” ;
return string ;

}
public String addToString (String string , double addition) {

string += addition + ” ,” ;
return string ;

}
}
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