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Abstract

The main purpose of this project is to explore the function and capability of 64 bit

processors. Sixty-four bit processors have been on the market for roughly 5 years now,

but it is not clear what their advantage is over the 32 bit processors. The 64 bit processor

would be expected to provide benefits in the area of computation speed and

mathematical accuracy. My project explores the advantages of the 64 bit processor over

the 32 bit processor specifically in the area of floating point computation.



Table of Contents

Chapter 1 Introduction

1.1 Background 5

1.2 Thesis Plan 5

1.3 Key Terms 7

1.4 Outline of Report 8

Chapter 2 Literature Review

2.1 64 bit vs. 32 bit 9

2.2 RISC vs. CISC 10

2.3 Benchmarking 11

2.4 Floating Point Arithmetic 13

2.4.1	 WEE Standards 14

Chapter 3 Methods

3.1 Hardware Profiles 15

3.2 FPU test 17

3.3 Crank Nicotson Algorithm 18

3.4 Eliminating Errors 19

3.4.1	 Loop and Declaration Overhead 21

3.4.2	 Compiler Optimization 22

3.4.2.1	 Unrolling The Loop 22

3.4.3	 Operating Systems 24



Chapter 4 Results

4.1 	 FPU test 24

4.1.1 486 DX4 100 MHz 24

4.1.1.1 	 Eliminating Overhead 24

4.1.1.2 	 FPU test results 25

4.1.1.2 	 MFLOPS graphs 27

4.1.2 DEC Alpha AXP 21064 166 MHz 30

4.1.2.1 	 Eliminating Overhead 30

4.1.2.2 	 FPU test results 30

4.1.2.2 	 MFLOPS graphs 32

4.2 	 Crank-Nicolson Algorithm 34

4.2.1 Sample Output from Algorithm 34

4.2.2 Speed Results and Discussion 35

Chapter 5 Discussion 37

Chapter 6 Conclusions 38

Chapter 7 Code: 7.1 	 test cpp 39

7.2 	 PPUtestcpp 40

7.3 	 crank.cpp 42

7.4 	 test.c 45

7.5 	 FPUtest.c 46

7.6 	 crank.c 47

Bibliography 49



I. Introduction

1.1 Background Information

In mid 1994, a group of local information technology (IT) professionals partnered

with Sault Ste. Marie's Economic Development Corporation (EDC) to form a

"Telecommunications Committee". Their mandate was to develop and support strategies

that promote information technology-enabling business opportunities, including the

establishment of community and regional information networks. Then, in May 1995,

several members of this committee initiated the formation of SSMCCN (Sault Ste. Marie

Community Computing Network), with the specific purpose of implementing a Sault Ste.

Marie "freenet". SSMCCN then procured a $20,000 DEC Alpha AXP 21064 as a

donation from DEC and ONYX, sixteen modems from Bell Canada, Algoma Business

Computers, and Soonet, a $7000 terminal server from Gandalf, and many other donations

of time and money from other local area businesses.

After discussing possible topics for a thesis with my advisor, we decided that the

DEC Alpha AXP 21064 (which has a 64 bit processor) would be a suitable test machine

for investigating what a 64 bit processor's advantages are over a 32 bit processor.

1.2 Thesis Plan

The purpose of this project is to investigate the advantages of a 64 bit processor

over a 32 bit processor. This project will specifically address the differences between the

FPU's (Floating Point Units) of a 64 bit processor and that of a 32 bit processor. The

two areas that will be focused on are speed and accuracy. To do this, two algorithms will



be executed on both a 64 bit and a 32 bit processor and the results will be compared. To

compare speed, a small program that executes different floating point instructions

millions of times will be timed. To compare accuracy, the plan was to code the Crank-

Nicolson algorithm for solving partial differential equations and perhaps use a larger

precision on the Alpha than the PC, but when it was discovered that the DEC C compiler

on the Alpha did not support IEEE double extended precision and the Borland C++

compiler on the PC did, it was decided that this algorithm could also be used for a good

measure of speed on a real world application_

A few issues that will not be addressed in depth are the differences in the

compilers (on the 32 bit PC a Borland C++ compiler was used and on the Alpha, a DEC

C compiler was used), and the finer details of the architectures of the two machines.



1.3 Key Terms

The key tel las that will be used in this paper are defined as follows:

DEC -	 Digital Equipment Corporation

FPU -	 Floating Point Unit

MFLOPS -	 Millions of Floating Point Operations per Second

MIPS -	 Millions of Instructions per Second

RISC -	 Reduced Instruction Set Computer

CISC -	 Complex Instruction Set Computer

SPEC -	 System Performance Evaluation Corporation

TPC -	 Transaction Processing Performance Council

IEEE -	 Institute of Electrical and Electronics Engineers

SSMCCN - Sault Ste. Marie Community Computing Network



1.4 Outline of Report

This report is organized as follows:

a) a short literature review of what has been said on the topic of 64 bit processing vs.

32 bit processing, CISC vs. RISC chips, benchmarking and floating point

standards,

b) an architectural background of the test machines, the DEC Alpha AXP 21064 and

the 486DX4 PC (this includes published benchmarks, and interesting features of

the processors),

c) a description of the research methods that were used, and the equipment needed

(including software and hardware) to carry out the project (here is an

analysis of the code that was written and tested on the different machines and an

analysis of the effectiveness of the software),

d) the results of the testing that was done - this contains all data collected and all

other relevant information that was used when determining what the results of the

testing were,

e) the discussion of the results - here will be an analysis of the results and a

discussion on what they mean and what the implications are of these findings,

f) a discussion of the factors that limited the accuracy of the results and what was

done to try to eliminate these factors,

g)	 a final statement of what was learned from the completion of the project.



2. Literature Review

2.1 32 bit versus 64 bit

The CPU's of today's desktop machines are usually either "32 bit" or "64 bit"

processors. This means that the machine's registers, addresses, integer units, floating

point units (usually have significantly more bits than the architecture of the rest of the

CPU), and buses are all 32 or 64 bits wide. DEC's Alpha uses a 64 bit architecture,

whereas most desktop PC's are still based on 32 bit architectures (there are still some 16

bit machines around). The debate arises as to whether there is a need yet to move to a 64

bit architecture. A few years ago, DEC and SGI were pushing toward the 64 bit

architecture because they felt that users were being held back by the 4 gigabyte limit on

real memory address space imposed by a 32-bit architecture (although there are not too

many users around that need to address more than 4 gigabytes of memory). Another

issue even today is whether there is software to support a 64 bit architecture. It can be

argued that there is not much point in having a 64 bit processor if your C compiler (or

other software) is designed for a 32 bit architecture. Although it is fairly likely that it

would be faster because two 32 bit values could be moved at a time, instead of one.

IEEE standards have been defined for single extended and double extended precisions

(see 2.4.1) but these two standards are not yet supported in all computer architectures or

computer software.

The question of software alone makes it impractical for today's average consumer

to purchase a machine based on a 64 bit architecture. There have been rumors of a 64 bit

version of UNIX, but other than this, it is unknown whether there is an operating system



in existence today that is based on a 64 bit architecture. And although it is very possible

to run 32 bit applications on a 64 bit architecture, it appears to be a waste of the system's

resources and the cost of a 64 bit machine does not make it viable for the average

consumer.

2.2 RISC versus CISC

"The first modern RISC machine was the 801 minicomputer built by IBM,

starting in 1975" (Tanenbaum, 435). RISC stands for Reduced Instruction Set Computer,

and a RISC architecture is characterized by a small set of fixed-length instructions that

each take only one clock cycle to execute, simple memory addressing modes, and a strict

decoupling of load/store memory access instructions from register-to-register arithmetic

instructions (Sites, 37). What this means is that only Load and Store instructions can

access memory. With a good compiler making sure that the instruction in the pipeline

after the Load does not need the item being loaded from memory, the pipeline continues

executing one instruction per cycle and the machine continues at full speed. If the

instruction after the Load does use the item being loaded, and the compiler cannot find

another instruction to insert in the pipeline after the Load, then the compiler may insert a

NO-OP and waste one cycle (Tanenbaum, 440). A RISC architecture is usually highly

pipelined, and the complexity is found in the compiler.

CISC stands for Complex Instruction Set Computer, and a CISC architecture is

characterized by many variable-length instructions that take multiple clock cycles to

execute, a wide variety of memory addressing modes, and instructions that combine one



or more memory accesses with arithmetic. CISC designs express computation as a few

complex steps (Sites, 37). The instructions in a CISC architecture are interpreted by a

microprogram and the complexity is in the microprogram. The CISC architecture uses

less pipelining than the RISC, if at all.

2.3 	 Benchmarking

Benchmarking is the technique of measuring a device's performance against its

counterparts using some universal measuring tool for that type of device. In the world of

computers, the measuring tools were for a long time MIPS and MFLOPS (Millions of

Instructions Per Second and Millions of Floating Point Operations Per Second). In 1975,

Curnow and Wichman invented the "whetstone", a benchmark that measured floating

point operations as whetstones per second. Then, in 1984, the "dhrystone" appeared as a

benchmark for integer operations. These benchmarks were good (they are stilt used

today), but with the advent of the RISC architecture around 1975 (did not really show up

on the scene until the early 1980's), measuring instructions became more difficult. The

instruction was not a clearly defined unit anymore because the RISC architecture

executed one instruction per cycle, whereas the more complex CISC instructions were

broken down into microinstructions. After a while, IVIIPS came to mean "meaningless

indicator of processor speed" (Morse, 80). Although this does not discourage computer

corporations from publishing their new processor's MIPS number. This meant that it was

time to come up with a more standardized set of benchmarks that would not depend on

the architecture of the hardware. This need spawned two benchmarking companies:



SPEC (System Performance Evaluation Corp.) and TPC (Transaction Processing

Performance Council).

"The SPEC suite of benchmarks is a set of CPU intensive programs that measures

a machine's CPU speed against a Digital Equipment Corp. VAX 11/780. The actual

measurement is the number of work tasks accomplished in a fixed period of time, which

means higher numbers are better" (Morse, 80). Back in 1989, the SPEC benchmark was

called SPECmark89 and it was the mean of the output of four integer and six floating

point programs. This value was then compared as a ratio to that of the VAX 11/780 to

reveal a result. There were problems with this method because the result represented a

combination of both integer and floating point calculations, and with compiler

optimization tricks, it was hard to tell if the result of SPECmark89 was actually a good

measure of the CPU's performance. So, in 1992, the SPEC benchmarks were split up

into two main categories, one to focus on integer arithmetic and one to focus on floating

point arithmetic. These new benchmarks were called SPECint92 and SPECfp92 and

these new benchmarks used a larger number and a wider variety of algorithms to test

CPU performance. The six integer programs included applications such as a spreadsheet

and a data compression program, and the fourteen floating point programs included

algorithms to solve problems in astrophysics, quantum chemistry, hydraulics, plasma

physics, optics, neural nets, medical research and matrix analysis (Morse, 80). The

calculation for the final numerical result was similar to that of SPECmark89. Recently,

SPEC came out with its newest set of benchmarks, SPECint95 and SPECfp95. SPECint

and SPECfp have been the most predominant benchmarks over the last four years on the



market for evaluating performance of processors in the areas of integer and floating point

computational ability.

Transaction Process Performance Council, the other major benchmarking

corporation, has focused on other aspects of the performance of a computer. Their

benchmarks, TPC-A, TPC-B, and TPC-C test performance of processor and 110

subsystems, networks, and reading from and writing to databases (Morse, 82). The A and

B benchmarks "entail significant disk activity but only moderate demands on the process;

they both.require that the integrity of all transactions be maintained" (Morse, 82). The C

benchmark is similar to the A benchmark "but it is much more complex in both the

database design and the transaction scripting" (Morse, 82). 1PC's "point of view is

definitely that of business and commercial users, since the model database mimics the

operations of a commercial bank's branches or a wholesale supplier" (Morse, 82).

"In the end, benchmarks are both measurement tools and marketing tools"

(Morse, 84).

2.4	 Floating Point Arithmetic

Over the years, different methods of representing real numbers on computer

systems have been suggested (floating slash, signed logarithm, etc.), but the floating point

convention is now the one used by most computer systems.

Floating point numbers are defined by three parameters, a base, a precision and a

sign. The base could actually be any number greater than or equal to two, but the bases

that are most often used are 2 (binary), 8 (octal), 10 (decimal), and 16 (hexadecimal).



The precision represents the number of digits that the number will be displayed with, and

the sign represents whether the value is positive or negative. Therefore, if we wanted to

represent 0.1 as a floating point number with base 10 and precision 3, it would appear as

1.00 * 10^(-1) (Goldberg, 6). But computer systems work in binary at the hardware level,

so it becomes necessary to define standards by which all systems will work. Different

standards have been defined for different machines over the years (i.e. VAX, IEEE).

Intel used the IF.F.F, standards in it's 8088 processor (which was used by IBM in the

original PC) and the IEEE standard has now been entrenched in most of today's desktop

computers.

2.4.1 IEEE Standards

In the late 1970's, IEEE (Institute of Electronics and Electrical Engineers) saw a

need for standardizing floating point computation and so they came up with a set of

standards for representing floating point numbers, methods for rounding them, the use of

a guard digit to reduce error in calculation etc. The IEEE standards for single precision,

single extended precision, double precision and double extended precision are as follows:

Parameter Single Single Extended Double Double Extended

Precision 24 >= 32 53 >= 64

Exponent Max. +127 >= +1023 +1023 > +16383

Exponent Min. -126 <= 1022 -1022 <= 16382

Exponent width in bits 8 11 >= 15

Format width in bits 32 >= 43 64 >=79

(Goldberg, 18).



For example, the breakdown for an IEEE double precision floating point number

is as follows: 64 bits total are made up of I sign bit, 11 exponent bits, and a 53 bit

mantissa. The usefulness of having a standard on which all machines can be built is this:

"Once an algorithm is proven to be correct for IEEE arithmetic, it will work correctly on

any machine supporting the IEEE standard" (Goldberg, 19).

3. Methods

3.1	 Hardware Profiles

The two main machines that were used for testing were a DEC Alpha AXP

21064, and a 486DX4 PC.

The Alpha has a RISC architecture (see 2.2), that includes 168 instructions in its

instruction set. It is a dual issue CMOS processor, meaning that it issues 2 instructions

per clock cycle to any two of the four functional units:

1. the integer unit,

2. the floating point unit,

3. the load/store unit, and

4. the branch unit.

It's obvious that 2 instructions cannot be issued to the same unit in the same clock cycle,

but there are some more subtle rules involved. These rules are as follows:

1. any load/store in parallel with any operate (integer or floating point) is

possible,

2. an integer operate in parallel with a floating operate is possible,



3. a floating operate and a floating branch is possible,

4. an integer operate and an integer branch is possible,

5. an integer store and floating operate are not allowed, and

6. a floating store and integer operate are not allowed.

The 21064 is a 64 bit processor (meaning that registers, internal buses, and execution

units are all 64 bits wide) that runs at 166 MHz. It has a 10 stage fully pipelined floating

point unit and a 7 stage fully pipelined integer unit Pipelining is the idea in which an

instruction is fetched in the first stage of the pipeline (during one clock cycle), then in the

next clock cycle, that instruction moves into the second stage and is decoded while the

next instruction in the program is being fetched. This continues until the last stage of the

pipeline in which each instruction is executed. Under ideal circumstances, the pipeline

will make it possible to execute one instruction per cycle. In practice this does not work

due to branch delays, etc. Under ideal conditions, the 21064's pipelined FPU can

produce a 64 bit result every clock cycle for every operation except divide, which is

handled by a non-pipelined, single bit per cycle dedicated divide unit. The operating

system used on the Alpha was UNIX and the programming language used was C, with a

DEC C compiler. Published benchmarks on the 166 MHz 21064 are:

SPECint92/SPECfp92: 	 90/140

MIPS:	 400 (peak)

MFLOPS:	 200 (peak).

(Source for all DEC Alpha AXP 21064 architectural information was Digital Technical

Journal Vol. 4, No. 4, 1992)



The PC that was used in testing contained an AMD 486DX4 100 MHz processor.

The 486DX4 is only a single issue 32 bit CISC processor (has 32 bit registers, data bus,

address modes, etc.) with a floating point unit. An interesting feature of this processor is

the write-back cache. This design is an improvement on write-through cache. In write

through cache mode, data is written to cache and main system memory at the same time,

whereas write back cache minimizes the number of writes to the main system memory,

increasing the performance of the CPU. Published benchmarks on the 100 MHz 486DX4

are as follows:

SPECint92/SPECfp92:	 48/24 (Snow, 1)

MFLOPS:	 2.34 (Juffa, ctest260 result).

3.2	 FPU Test

The FPU test is a piece of simple code that was written to get a measure of

MFLOPS from the two machines. This code was just for testing raw speed, so it was

decided that both machines would work with double precision values. It was first written

on the PC in C++, and then later translated into C for the Alpha. It was used to test how

fast the two FPU's were on the different types of floating point operations (adds,

subtracts, multiplies, and divides). To do this, it was first necessary to decide what type

of floating point numbers to work with. It was decided that the most accurate measure

would be using irrational numbers because this would force both FPU's to also do some

rounding. At this time it was also necessary to decide whether to try to write an

algorithm to create irrational numbers, and write them to an array so that they could then



be accessed from inside the loop. It was decided that accessing an array from inside the

loop would slow the CPU down and give an inaccurate reading of MFLOPS. So, it was

decided that just two irrationals would be used and that they would be defined at the

beginning of the program. The two irrationals were defined as pi and e as double

precision values.

Then on both machines, two sets of code were run:

I. loops containing, all four operations inside (+,-,*,/), and

2. loops containing each operation separately.

These results were then recorded and analyzed.

3.3	 The Crank Nicolson Algorithm

After a meeting with Dr. Lawson to discuss a numerical problem that would push

a 64 bit processor to the limits, it was decided that the Crank Nicolson Algorithm (found

in Numerical Mathematics and Computing, pg. 464) would be used. The Crank Nicolson

Algorithm is a method of solving parabolic partial differential equations, and in

particular, the heat equation. The example that is used for demonstration in the book is a

heat equation with initial boundary conditions:

a2 u(x,t) = a u(x,t)
axe 	 at

u (0,t) = u(l,t) = 0

u(x,0) = sinzx

This example could be explained using a thin rod of length one insulated so that heat can

escape only from the ends, which are maintained at a temperature of zero degrees, and



with an initial temperature distribution along the rod. Now this example can easily be

solved exactly, and that is why it is used. In the algorithm, the Crank Nicolson solution

is compared to the exact solution to show that the Crank Nicolson algorithm is stable.

The Crank Nicolson algorithm is of course needed for problems which cannot be solved

exactly.

The algorithm found in "Numerical Mathematics and Computing" is designed to

compare the results of the two methods, but the reason that this algorithm was chosen for

this thesis was to demonstrate that with a 64 bit architecture, using double extended

precision would give a more accurate solution than double precision on a 32 bit

architecture in a faster time. But because of the fact that the DEC C compiler did not

support double extended precision, and the Borland C++ compiler did, this is not what

the Crank Nicolson Algorithm was used for. It was decided that the time of the

execution of the algorithm would be the result that would be scrutinized. In order to do

this, the number of points calculated along the rod had to be increased and the number of

points in time t had to be increased so that the timing would give a larger and more

accurate number. It was quickly discovered that the C++ compiler could not handle

more than a 40 by 150 double precision two dimensional matrix. So the 40 was set as the

number of points along the rod and 150 was taken as the number of points in time that

the temperature along the rod was calculated. Then, on the DEC Alpha, the dimensions

of the matrix were changed and through trial and error a size was found that, when

executed, took the same length of time to execute as the algorithm on the PC.



3.4	 Eliminating Errors

To begin the comparison, it must be pointed out that the two machines were

running on two different operating systems and two different compilers were being used.

The Alpha was running a version of UNIX and the PC was running Windows95. As for

compilers, the PC was running Borland C++ 4.51, and the Alpha was using a DEC C

compiler (which have been said to be among the best compilers around).

The key to testing a CPU for any type of functionality is the availability of a good

timing function somewhere in the system. In UNIX, there is a shell timing function

which will tell the user several things about an executable that is timed. It will tell the

user how much real time was used, how much time the user used, and how much time the

system used. This timing function proved to be highly effective. On the PC however, the

timing function was found inside C++ and was found to be slightly less than reliable in

that the results for the same function timed twice could vary drastically. This was one of

the first problems that needed to be addressed.

Also, when comparing the results of the FPU test to published numbers for both

machines, it was immediately apparent that there were large discrepancies. After looking

more closely at Juffa's ctest26O code written in Pascal, it became evident that Juffa had

timed certain functions and then subtracted the clock function time from the total time to

give a more accurate MFLOPS reading. It was obvious that this type of approach would

be needed to improve the results of the FPU test.



3.4.1 Loop and Declaration Overhead

To eliminate the time that the CPU was spending on incrementing the loop, a

loop of different sizes was set up and timed. On the PC, a clock function was set up

inside the loop so that this overhead could also be eliminated (this was not needed on the

Alpha because the clock function was an external shell function). It became apparent

that the clock function in C++ either was not very accurate or had been implemented

badly because the results came back varying by up to 3.5% on loops of one million

iterations. One of the tests that was run was to time the loop by itself, and then time the

loop with the clock function inside it. Then, the time for the loop was subtracted from

the loop and clock time, to reveal the time the clock function took by itself. This test

actually revealed just how inaccurate the clock function was because roughly half of

these calculations resulted in negative values (implying that the clock function took

negative time). So, to stabilize the results and get as accurate a number as possible, a one

million iteration loop was set up with the clock function in it, and this was timed one

thousand times and averaged. By this time the variance was down to 0.3%, and these

values were then averaged another ten times to give the result that would be subtracted

from the l, PU test timings on the PC.

On the Alpha, the results for timing loops were stable, so it was not necessary to

go to the same lengths as on the PC. All that was needed here was to time the declaration

of variables and loops of three different sizes: one billion, one hundred million and ten

million iterations.



3.4.2 Compiler Optimization

During the testing process, the question of compiler optimization arose. It was

discovered that both compilers had switches that could be used to try to optimize the

code using different techniques. These switches were not used, because it would not be

clear exactly what the compiler was doing, and the results would not be as meaningful.

So, after comparing the results of the FPU test with published results and, in the case of

the PC, the results of the ctest260, and finding that the FPU test gave relatively low

numbers, it was decided that some type of optimization must be looked in to. So, a

manual "unrolling of the loop" was implemented.

3.4.2.1 Unrolling the Loop

Unrolling the loop is a compiler optimization trick that lets the CPU do a better

job of scheduling instructions. It is a method in which the compiler will actually

repeatedly write out the code inside a loop and take iterations out of the loop for the

compiled version. Thus, the same number of total iterations will be executed, but the

compiler will save CPU time for branch penalties, loop incrementation, and counter

checking when the code is executed. The user would think that with today's branch

prediction algorithms that a branch delay would not waste more than perhaps one clock

cycle, but in actuality, even with a good branch prediction, the pipeline will be partially

flushed (depending on the machine), resulting in wasted clock cycles. This does not take

into account the clock cycles needed to increment the loop and check if the loop has

reached the final iteration.



So the method of optimization used on both machines was a manual unrolling of

the loop. This was done several times on each machine to get results at several stages of

the unrolling. It becomes evident that the optimization reaches a limit and a graph of the

MFLOPS plotting different stages of unrolling the loop shows that an asymptote is

eventually reached.

On the PC, with both sets of code, the loops were started with between one and

four instructions in them and then unrolled several times until there were up to five

hundred instructions in them. At this point, it was evident that the limit for optimization

had been reached.

On the Alpha, we recall that the pipeline is said to be able to output a 64 bit result

for all operations but divide, and that there is a single bit per cycle dedicated divide unit.

Well, for the operations add, subtract, and multiply, it was found that the MFLOPS

numbers were identical and the limit of optimization was reached when the loop had

been unrolled to five hundred iterations. Divide was an interesting case, but it proved to

give the expected results. When the loop only had one division in it, the results were not

much better than that of the PC. But, as the loop was unrolled, it became apparent that

the dedicated divide unit could perform extremely well under the right conditions. The

divide operation reached the optimal limit at around two thousand iterations inside the

loop. All four operations were also put into a loop and it was unrolled to five hundred

iterations before it approached the optimal limit.



3.4.3 Operating Systems

The operating system is a very crucial element when trying to evaluate a

computer system's overall performance. The big difference between the PC and a

machine like the DEC Alpha is that the Alpha is a multi user system and the PC is a

single user system. A multi user operating system is constantly switching between

different user's tasks. This is what allows the timing function to be able to output so

much information about how much time any one task is using. In contrast to this is the

PC, which is a single user system running Windows95. It is unclear exactly what effect

this had on the overall results of all the code that was executed on both machines, but it

definitely is a factor.

4. Results

4.1	 FPU Test

The results for the FPU test were collected from both machines and will be

presented first for the 486DX4 and then for the DEC Alpha.

4.1.1 486DX4

4.1.1.1 Eliminating Overhead

To eliminate the overhead, several algorithms were tried until the following

results were achieved from the .cpp file "test.cpp". Each value in columns one and two

represents one billion iterations each. Column three represents the difference of columns

one and two. All times are in seconds.



test # 1. Timing for just loop 2. Timing for loop and clock 3. Timing for just clock

1 0.15363 0.15456 0.00093

2 0.15348 0.15424 0.00076

3 0.15357 0.15474 0.00117

4 0.15351 0.15447 0.00096

5 0.15345 0.15446 0.00101

6 0.15362 0.15450 0.00088

7 0.15355 0.15461 0.00106

8 0.15344 0.15444 0.00100

9 0.15329 0.15449 0.00120

10 0.15366 0.15438 0.00072

ave. 0.15352 0.15449 0.00097

The number that was eventually used for all corrections on the PC was the

average from column two, the timing for one million iterations of the loop and clock

functions.

4.1.1.2 1, PU Test Results

The following table contains the results of both testing the operations separately,

and testing all four operations together.



Operation	 Degree of Loop Unrolling	 MFLOPS

add	 1	 0.76

10	 2.56

50	 3.38

100	 3.51

subtract	 1	 0.76

10	 2.59

50	 3.37

100	 3.51

multiply	 1	 0.67

10	 2.24

50	 2.80

100	 2.89

divide	 I	 0.50

10	 0.95

50	 1.05

100	 1.06

all operations together	 4	 1.21

40	 2.07

400	 2.16
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4.1.2 DEC Alpha AXP 21064

4.1.2.1 Eliminating Overhead

To eliminate the overhead on the Alpha, both the variable declarations and the

loop iteration time had to be timed because for the FPU test, the entire piece of code was

timed, including declarations. The times were recorded for three different loop sizes and

the results were as follows:

Loop Size	 Time

10 million	 0.4 seconds

100 million	 3.7 seconds

1 billion	 36.6 seconds

4.1.2.2 FPU Test Results

The following table contains the results of both testing the operations separately,

and testing all four operations together.

Operation	 Degree of Loop Unrolling 	 MFLOPS

add	 1	 54.35

10	 116.69

50	 151.33

100	 158.73

500	 160.77

subtract	 1	 54.35

10	 116.69



50	 151.33

100	 158.73

500	 160.77

multiply	 1	 54.35

10	 116.69

50	 151.33

100	 158.73

500	 160.77

divide	 1	 2.73

10	 23.04

50	 73.75

100	 102.15

500	 125.75

1000	 135.67

2000	 142.05

all four operations together 4 	 10.91

40	 67.57

200	 126.58

400	 136.52
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4.2	 Crank Nicolson Algorithm

4.2.1 Sample Output

The following is a sample output for m = 20 and n = 10 as the example in the book

suggests. This output is identical for both machines because they were both working in

double precision.

USING THE CRANK NICOLSON METHOD:
t u[1] u[3] u[5] u[7] u[9]
0.000 0.30902 0.80902 1.00000 0.80902 0.30902
0.005 0.29460 0.77127 0.95334 0.77127 0.29460
0.010 0.28085 0.73528 0.90886 0.73528 0.28085
0.015 0.26775 0.70097 0.86645 0.70097 0.26775
0.020 0.25525 0.66827 0.82602 0.66827 0.25525
0.025 0.24334 0.63708 0.78748 0.63708 0.24334
0.030 0.23199 0.60736 0.75074 0.60736 0.23199
0.035 0.22117 0.57902 0.71571 0.57902 0.22117
0.040 0.21085 0.55200 0.68231 0.55200 0.21085
0.045 0.20101 0.52625 0.65048 0.52625 0.20101
0.050 0.19163 0.50169 0.62012 0.50169 0.19163
0.055 0.18269 0.47828 0.59119 0.47828 0.18269
0.060 0.17416 0.45597 0.56361 0.45597 0.17416
0.065 0.16604 0.43469 0.53731 0.43469 0.16604
0.070 0.15829 0.41441 0.51224 0.41441 0.15829
0.075 0.15090 0.39507 0.48834 0.39507 0.15090
0.080 0.14386 0.37664 0.46555 0.37664 0.14386
0.085 0.13715 0.35906 0.44383 0.35906 0.13715
0.090 0.13075 0.34231 0.42312 0.34231 0.13075
0.095 0.12465 0.32634 0.40338 0.32634 0.12465
0.100 0.11883 0.31111 0.38455 0.31111 0.11883

EXACT SOLUTION:
t u[1] u[3] u[5] u[7] u[9]
0.000 0.30902 0.80902 1.00000 0.80902 0.30902
0.005 0.29414 0.77006 0.95185 0.77006 0.29414
0.010 0.27997 0.73298 0.90602 0.73298 0.27997
0.015 0.26649 0.69769 0.86239 0.69769 0.26649
0.020 0.25366 0.66410 0.82087 0.66410 0.25366
0.025 0.24145 0.63212 0.78134 0.63212 0.24145
0.030 0.22982 0.60168 0.74372 0.60168 0.22982
0.035 0.21876 0.57271 0.70791 0.57271 0.21876
0.040 0.20822 0.54514 0.67383 0.54514 0.20822
0.045 0.19820 0.51889 0.64138 0.51889 0.19820
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Where m represents the number of times that the temperatures on the rod are calculated

and n represents how many points on the rod that the temperatures are calculated. These

results show that the Alpha was able to calculate two times as many m values and three

and a half times as many n values to the same precision in the same amount of time.

This equates to a total of seven times the calculations in the same amount of time.



5. Discussion

The numbers resulting from FPUtest reveal much of what was expected. It is true

that both the PC's and the Alpha's MFLOPS numbers were lower than published

numbers, but this is easily explained by the simple fact that it is unknown what type of

functions the manufacturers used to determine these numbers. The FPUtest gave equal

weighting to the four operations, including divide that was noticeably slower than the

others. One interesting result that was perhaps expected, was the MFLOPS result from

the Alpha on divides. This result showed that if dedicated divide unit is used optimally,

it can produce 64 bit divide results almost as quickly as the floating point unit can

produce 64 bit results for the other operations. The PC showed that it was not as

effective at executing divides, even with optimization, this operation took considerably

longer than the multiply, which took slightly longer than the add and subtract.

The Crank Nicolson Algorithm revealed that even though the Alpha can

outperform the PC by a factor of roughly 74 in straight MFLOPS, when a real world

application without any optimization is tested, the Alpha's performance is cut quite

considerably by divides. The Alpha could actually only output roughly seven times as

many double precision floating point values in the same amount of time as the PC when

running the Crank Nicolson Algorithm.



6. Conclusions

During the testing of these two machines, it became evident that, like MIPS, the

term MFLOPS becomes meaningless in comparing the performance of two machines

with architectural differences as diverse as a PC and a DEC Alpha. This is shown very

well when looking at the results of the FPUtest and then looking at the results drawn

from the Crank Nicolson algorithm_

The results of the Crank Nicolson algorithm on the Alpha indicate that if a user is

planning to write code for the Alpha for which time is a large factor, it may be wise to try

to convert as many of the divides as possible to multiplications, unless the divides can be

written in an optimal way.

It can also be observed from the work done in this thesis, that as far as

programming environments, the PC with an operating system like Windows95 is not as

friendly as the UNIX environment on an Alpha.



7.1

//	 test.cpp
//	 Written for Borland C++ 4.51 on a 486DX4 PC
//	 This code times two loops, one that just loops one million times, and the other
//	 contains a clock function inside a one million iteration loop. These results are
//	 used to eliminate error from the FPUtest.cpp file.
#include <iostream.h>
#include <time.h>
#include <math. h>
void main()

clock_t startl, endl, start2, end2,start3,end3,start4,end4;
double ticks,ticks2,adjusted,result;
long x = 1000000;
int y = 1000;
ticks = 0;
//	 FOR LOOP 1ESTING
for (int a = 0; a < y; a++)
{

startl = clock();
for (long	 i < x; i++){};
endl = clock();
ticks = ticks + (end 1 - start1)/CLKTCK;

};
result = ticks/y;
cout<<"iterations:	 "<<x<<endl;
cout<<"just loop average: 	 "<<result<<endl;
//	 CLOCK TIME TESTING
for (int b=0; b < y; b++)
{

start4 = clock();
for (long j — 0; j < x; j++);

start3 clock();
end3 = clock();

1
/

-
5 5

end4 = clock();
ticks2 = ticks2 + (end4 - start4)/CLK_TCK;

);
ticks2 = ticks2/y;
adjusted = ticks2 - result;
cout<<"loop and clock average: "<<ticks2<<endl;
cout<<"just clock average: 	 "<<adjusted<<endl;

i;



7.2
//	 FPUtest.cpp
//	 Written for Borland C++ 4.51 on a 48613X4 PC
//
// This code executes one main loop that contains between one and five hundred floating
// point operations. The time is recorded and from it is subtracted the overhead time that
// is collected from the "test.cpp" code. From this number, the MFLOPS are calculated.

#include <iostream.h>
#include <time.h>
#include <math.h>

double a,b,c,t,t2,total,mflops,mflops2;
long x,mil;
int y, unrollfactor;
clock t startl,endl;

void main()

double adjustment = 0.15449; // result taken from file "test.cpp"
// represents time adjustment for time taken to
// increment loop counter and time to record
// time in clock function

mid = 1000000;

a = 2 * (asinl(1.0));
	

// a and b represent the two floating point
b = exp(1.0);
	

// numbers that are used in the calculations of
// the mflops.

cout<<a<<" "<<b<<endl; // Output the two floating point values to be
// used in the calculations. They are Pi and e.

x = 1000000;
	

// Inner loop iteration number
y = 10;
	

// Outer loop iteration number(used to average results)
total = 0;
unrollfactor = 1; // The factor with which the loop has been unrolled_

// In this case, there is one add operation, so the
// unroll factor is 1.

for (int d=0; d<y; d++)

start]. = clock();
for (long e=0; e<x; e++)



c=a+b; // This is the location of all the floating point
// calculations. The example here is the add operation
// with a loop unrolling factor of 1.

1;
endl = clock();
total = total + (end I -start I );

1;

total = total/CLK TCK;	 II Calculation of total time
t = total/y;	 // Time without adjustment
t2 = totally - adjustment;	 // Time with adjustment
mflops = ((unrollfactor*x)/mil)/t; 	 /1 Mflops without adjustment
mflops2 = ((unrollfactor*x)/mil)./t2; // Mflops with adjustment
cout<<"MFLOPS without adjustment: "<<mflops<<endl;
cout<<"MFLOPS with adjustment: "<<mflops2<<endl;

}; // end main



7.3
//	 Modified Crank Nicolson Algorithm On The PC
// Source: Numerical Mathematics And Computing, pg. 464
II	 Written for Borland C++ 4.51 on a 486DX4 PC
//
// This algorithm solves partial differential equations
// (specifically heat equations).
// In the book, the algorithm solves the heat equation of a rod
// (initial conditions, see 3.3)
//	 In effect, the CPU has to deal with an array of size m by n, containing
// double precision values. In this environment, the largest allowable array
// size was 150 by 40.
//	 This version, for the PC, has output at the end, outside the timing function.
// This output is just the temperatures along the rod at the last calculated time for both
// the exact solution and the Crank Nicolson algorithm

#include <iostream.h>
#include <math.h>
#include <stdio. h>
#include <time.h>

clock_t startl,endl;
double pi,xmult,expi;
int n,m;
double timer,h,k,r,s,t;
double c[50];
double d[501;
double u[50];
double v[501;
double ue[150][40];
double x[50];

void main()
{

start1 = clock();
int count=0;
int count2;
pi = 2 * (asin1(1));
n=40;
m=150;
h=1.0/n;

s----(h*h)/k;
r=2+s;



for (int 1=1; i <= (n-1) ; i++)
{

d[i}=r;
etii=(- I);
u[i]=sinl(pi*i*h);
ue[O}[i} = u[i];

};

for (int j=1; j 	 m; j++)

for (int i1=1; 11 <= (n-1); il++)
{

d[i 11 = r;
v[iI] = s*u[il];

);

//	 PROCEDURE TRI
for (int i2=2; i2	 (n-1); i2++)
{

int calc = i2 - 1;
xmult = (-1)/d[calc];
d[i2} = d[i2} + xmult;
v[i2} = v[i2} - (xmult * v[i2-11);

1;

x[n-I}= v[n-l]/d[n-1];

for (int i3 = n-2; i3 >= 1; i3—)
{

x[13} = (v[131 + x[13+1})/d[13];
1;

for (int i9 = 1; i9	 n-1; i9++)

v[i9} = x[i9};
};
// END PROCEDURE TRI

t = j*k;
expi = exp((-t) *	 pi);

//	 EXACT METHOD
for (int 14=1; i4	 (n-1); i4++)



{

u[i41= expi * sin(pi * i4 h);
ue[j][i4]= u[i41;

I;

for (int i5=1; i5 <= (n-1); i5++)
{

u[i5]= v[i5];
I;

I;
endl = clock();
cout<<endl;
timer = (endl - start1)/CLKTCK;

printf("Tota1 execution time (without 110): ");
printf("%1.2f\n\n",timer);

printf(" At time t = 0.1875 (the last iteration): \n\n");
printf(" Using the Crank Nicolson Method \n");

for(int i8=1; i8<=n-1; i8++)
{

count2 = count2 +1;
if(count2 —8) {printf(" \n");count2=1;};
printf("%1.5f ",u[i81);

I;
printf("\n\n");
printf(" The Exact Solution \n");

for (int i6 = m; i6	 m; i6++)
{

for (int i7 1; i7<=n-1; i7++)
{

count = count + 1;
if (count -- 8){printf(" \n");count=1;};
printf("%1.5f ",ue[i61[i71);



7.4
//	 test.c on the Alpha
//	 Translated from C++ to C
//
//	 This code tests the time the machine requires to declare variables and
// execute loops containing nothing different numbers of times. The results were
// used to adjust the results from FPUtest.c.

#include <math.h>
#include <float.h>

void main()
{

double a,b,c;
long int x,e;

a = 2 * asin(1.0);
b = exp(1.0);
x = 10000000;

for (e3; e<x; e++)

1;

};



7.5
//	 1-.13Utest.c on the Alpha
//	 Translated from C++ to C
//
//	 This algorithm executes a loop containing different floating point operations.
//	 The different operations were entered in the loop and unrolled to different
//	 degrees. Correction factors for loop and declaration overhead were taken from
//	 test.c.

#include <math.h>
#include <float.h>

void main()
{

double a,b,c;
long int x,e;

a = 2 * asin(1.0);
b = exp(1.0);
x = 100000000;1/ This is where the loop iteration number is entered.

// This was either 10 million, 100 million or 1 billion.

for (e=0; e<x; e++)
{

c=a+b; 11 all floating point instructions were entered in this
// loop. The example here is of an add instruction
// with no loop unrolling.

} ,



7.6
//	 Modified Crank Nicolson Algorithm On The Alpha
// Source: Numerical Mathematics And Computing, pg. 464
//	 Translated from C++ to C
//
// This algorithm solves partial differential equations
// (specifically heat equations).
// In the book, the algorithm solves the heat equation of a rod
// (initial conditions, see 3.3)
//	 The size of the array used on the Alpha was 300 by 140.

#include <float.h>
#include <math.h>
#include <stdio.h>

double pi,xmult;
int n,m,i,i1,i2,i3,i4,i5,i6,i9j;
double h,k,r,s,t,expi;
double c[300];
double d[3001;
double u[3001;
double v[300};
double ue[450][300];
double x[300];

void main()

pi = 2 * (asin(1.0));
n=140;
m=300;
h=1.0/n;
I -c=h*0.05;
s---(h*h)/k;
r=2+s;
// setting the u array values
for (i=1; i <= (n-1) ; i++)

u[ii=sin(pi*i*h);
ue[0][i] = u[i];

for (j=1; j <= m; j++)



for (i1=1; ii <= (n-1); il++)
{

d[ill = r;
v[ill = s*u[ill;

};

// Procedure TRI (Numerical Mathematics and Computing, pg. 251)
for (i2=2; i2 <= (n-1); i2++)
{

int ca1c i2 - 1;
)(mutt = (-1)/d[calc};
d[i2} = d[i21 + xmult;
v[i21 = v[i21 - (xmult * v[i2-11);

x[n-11= v[n-11/d[n-11;

for (i3 = n-2; i3 >= 1; i3--)
{

x[i3j = (v[i3j + x[i3+1])/d[i31;

for (i9 = 1; i9 <= n-1; i9++)

v[i9j= x[i91 ;
};
// 	 End Procedure Tri

t = j*k;
expi = exp((_t)*(pi*pi));

//	 Exact Method
for (i4=1; i4 <= (n-1); i4++)

u[i41= expi * sin(pi * i4 * h);
ue[j][i41= u[i4];

};
II	 End Exact
for (i5=1; i5 <= (n- 1); i5++)
{

u[i5} = v[i5];
};

I;
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