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Abstract

This study compared the estimations of annual average daily traffic (AADT) volumes

using the conventional method(Factors), multiple regression analysis, and the neural

network approach. All three approaches were compared using three different

classification schemes as well as different duration of traffic counts. The neural network

and multiple regression approaches consistently performed better than the conventional

approach, and the neural network approach in many cases slightly outperformed the

multiple regression approach. Apart from providing a good modeling tool for estimating

AADT, the results also provide useful insight into the duration of the short term traffic

counts and the classification schemes for the highway sites.
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Chapter 1

Introdu-tiou

Highway agencies collect traffic volume data from various seasonal and

permanent traffic counters over a number of years. Since the installation of a

permanent traffic counter (PTC) on every road section is not economically feasible,

highway agencies routinely use sample traffic counts. The sample traffic counts are

obtained using seasonal traffic counters (STCs). The data obtained from seasonal

traffic counts is routinely used to estimate important traffic parameters for the overall

highway network.

The present study deals with the estimation of an important traffic parameter

called annual average daily traffic (AADT). The AADT provides a measure of

overall utilization of the highway facility. The results obtained from the conventional

methods are compared with those obtained from the neural networks and multiple

regression analysis. The estimation of AADT in conventional methods is typically

done as follows. PTC sites are grouped together into similar patterns of temporal

volume variations and road classes according to driver population such as commuter,

long distance, and recreational (DiRenzo, et al. 1985; Sharma et al. 1986). Average

traffic factors are determined for each PTC or road group. These factors are then

used in estimation of required parameters from sample counts (Sharma and

Allipuram, 1993).

Classification and estimation of parameters using inductive learning

techniques is one of the major functions of neural networks. Recent developments in

neurocomputing (Hecht-Nielsen, 1990) are making it possible for relative novices to

employ neural networks in their analysis as a substitute for more elaborate statistical

procedures. This study uses one of the frequently used neural networks called
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multi-layer feedforward backpropagation network. Supervised learning is achieved

by a well established learning technique called the generalized delta rule.

Today the estimation of AADT volumes is done using a technique called

factors. This approach uses average factors for estimating AADT. An average factor

is computed for each of annual classification groups. STC data is then classified into

a one of the groups, and the factor for that group is multiplied with the average daily

traffic for that sample period to obtain an estimated AADT.

Estimation of AADT volumes can also be done by using multiple regression

analysis. The AADT is predicted by a linear combination of independent variables.

In this case the independent variables are represented by hourly counts. For 24, 48,

and 168 hour counts, 24, 48, and 168 independent variables respectively will be used

to represent the independent variables(regressor variables). For our multiple

regression models, the principle of least squares will be used to produce estimates of

AADT volumes that are the best linear unbiased estimates under classical statistical

assumptions.

For the purpose of training and testing the three models, the PTC sites are

grouped together based on similar traffic patterns. The short term classification is

done using the Kohonen neural networks to establish five different road classes. A

few PTC sites from each group are used for testing and short term counts similar to

the STCs are extracted. The PTC groups excluding the test PTC sites are used in the

development of factors, multiple regression constants, and neural networks to

estimate AADT. Since the classification of highway sites plays an important role in

the AADT estimation, actual development of factors, multiple regression constants,

and neural networks are carried out using different classification schemes. On the one

end of these classification schemes, there is the true classification established using

the complete annual traffic data. However, the seasonal traffic counters do not

provide the complete annual data necessary for the true classification. Hence, on the
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other end, all the PTCs are grouped in one class and the three models are developed

for the single class. In between these two extreme classification schemes, there are

classification schemes based on the traffic patterns collected during the short term

counts. The models are developed and tested for 24 hour, 48 hour and week long

counts.

This document will begin with a review of literature. This chapter will

provide a review of the three estimation models, as well as the various classification

schemes. Next, an explanation of how the experimental data was classified, and the

results of that classification will be presented in the study data and classification

schemes chapter. Following that chapter, the details of the three estimation models

used in the study will be explained in the description of models chapter. Next, the

results of the experiments will be explicitly shown and explained in the results and

analysis chapter. Lastly, the summary and conclusions will be provided in chapter 6.

IP
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Chapter 2

Review of Literature

This section reviews the conventional procedure for estimation of AADT. A

brief review of various classification schemes, neural networks and multiple

regression analysis is also provided. Annual Average Daily Traffic (AADT) volumes

are calculated by dividing annual traffic volume by the number of days in the year.

The estimation of AADT is done in two stages:

1. Classification of PTC and STC sites into different road classes.

2. Development of factors for estimation of AADT for each road class.

2.1 Road Classification

Different highway sections in a given highway system have different traffic

stream characteristics. Highway sections with similar traffic characteristics can be

grouped together to simplify the analysis. In Canada, there are usually 30 to 60 PTC

sites in a province, which are located throughout the provincial highway system so

that continuous data on the traffic patterns and characteristics of all classes of

highways are collected (Garber and Hoel, 1988). Grouping of PTC sites into similar

seasonal traffic patterns is required to establish various types of road classes. These

road classes are then used in the development of average expansion factors to

estimate parameters such as AADT from sample counts.

In a very commonly used classification system, roads are classified on the

basis of trip purpose and trip length characteristics (Sharma et al., 1986); examples of

resulting classes are commuter, business, long distance, and recreational. Such a

classification simplifies the analysis, because instead of analyzing individual highway

sections it is possible to consider a fewer number of classes. Trip purpose provides
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information about the road users. It is one of the important criteria in a variety of

traffic engineering analyses. Trip purpose can be determined by obtaining the

information directly from the road users. Unfortunately, it is not possible to obtain

such information from all the road users using all the highway facilities. Therefore, in

order to classify roads, traffic engineers study various traffic patterns obtained from

PTC sites and sample surveys of a few road users. Sharma and Werner (1981) used

monthly factors which are defined as the ratios of average daily traffic (ADT) for a

month to AADT, to classify PTC sites based on hierarchical grouping (a clustering

technique) and Scheffe's S-method of multiple group comparison. The classification

technique such as hierarchical grouping is applied to the PTC data to establish the

road classes based on complete traffic patterns. The STC sites only provide short

term counts. The STC sites are assigned to one of the road classes using the

incomplete traffic patterns obtained from short term counts using measures such as

least mean-squared error.

Recently, Lingras (1995) used the Kohonen Neural network for classification

of traffic patterns. The results of classification using the Kohonen neural network are

shown to be similar to the hierarchical grouping method. The Kohonen networks are

computationally more desirable for a large number of patterns and can also be used to

classify incomplete patterns obtained from STCs. The following subsections were

adapted from (Lingras, 1995).

2.1.1 Classification of Highway Sections Using Statistical Methods

The seasonal and permanent traffic counters scattered across the highway

network are the major sources of traffic data. These traffic counters provide the

traffic volume -- the number of vehicles that have passed through a particular section

of a lane or highway in a given time period. Traffic volumes can be expressed in

terms of hourly or daily traffic. More sophisticated traffic counters provide
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additional information such as the speed, length and weight of the vehicle. Highway

agencies generally have records from traffic counters over a number of years. In

addition to the data obtained from traffic counters, traffic engineers also conduct

occasional surveys of road users to get more information. In Canada, there are usually

30 to 60 PTC sites in a province, which are located throughout the provincial

highway system, so that continuous data on the traffic patterns and characteristics of

all classes of highways are collected (Garber and Hoel, 1988, Sharma and Allipuram,

1993).

The PTC sites are grouped together to establish various types of road classes.

In a commonly-used classification system, roads are classified on the basis of trip

purpose and trip length characteristics (Sharma and Werner, 1981); examples of

resulting classes are commuter, business, long distance, and recreational. Trip

purpose provides information about the road users. It is an important criterion in a

variety of traffic engineering analyses. Trip purpose information can be obtained

directly from the road users, but since all users cannot be surveyed, traffic engineers

study various traffic patterns obtained from seasonal and permanent traffic counters

and sample surveys of a few road users. Some of the important traffic patterns are as

follows:

• Hourly traffic pattern: Variation of hourly traffic volume in a given day.

• Daily traffic pattern: Variation of daily traffic volume in a given week.

• Monthly traffic pattern: Variation of monthly average daily traffic volume in a

given year.

The classification is done using different statistical procedures for grouping similar

objects. Sharma and Werner (1981) used monthly traffic patterns to classify PTC

sites based on hierarchical grouping (a clustering technique) and Scheffe's S-method

of multiple group comparison.
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2.1.2 Hierarchical Grouping

The hierarchical grouping technique is used to group a set of k-dimensional

vectors. Each vector represents a pattern. For example, a monthly traffic pattern is a

twelve-dimensional vector (Sharma and Werner, 1981). The ratio of monthly average

daily traffic (MADT) over the annual average daily traffic (AADT) is used as the

component for each month in the monthly traffic pattern. The process of grouping n

patterns starts with n groups -- one group for each pattern. By selecting two groups

which produce the least amount of within-group error, the number of groups is

reduced by one to n-1. The within-group error is calculated by summing up the

difference E(x,y) between all pairs of vectors (x, y) in that group given by:
k

E cx, — y;)2

E(x,y)=  i= 1 
(1)

where x, and y, are ith components of the vectors x and y, respectively. The

remaining n-1 groups are further reduced by one by combining two groups, such that

the within-group error is minimum. This process of grouping continues until the

number of groups is reduced to one.

The errors associated with the successive stages of the grouping process

represent the marginal cost of reducing the number of groups by one. The error

associated at a particular stage is greater than or equal to the error associated with the

previous stage of grouping. Hierarchical grouping does not specify the optimum

number of groups. However, the graph of error associated with successive stages of

grouping usually reveals a knee-of-curve -- that part of the graph where the error

starts increasing at rapid rate.

The PTC groups are used to develop guidelines for construction, maintenance

and upgrading of the highway sections. In order to apply these guidelines to all the

highway sections, it is necessary to assign these highway sections to one of the PTC

groups. Highway agencies attempt to use STC programs to classify all the highway
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sections in their jurisdiction under one of the PTC groups. Such a classification

usually involves assigning incomplete patterns to the existing groups of patterns. The

next section describes a statistical approach for such an assignment.

2.1.3 Classification of Incomplete Patterns

The schedule of STC programs suggested in the literature and practised by

highway agencies is diverse (Albright, 1991). Moreover, there is a lack of systematic

method to determine the PTC group that best fits the traffic pattern at each STC

location. Recently, Sharma and Allipuram (1993) used the least mean square error to

assign incomplete traffic patterns to the existing groups. Each group of patterns is

represented by a vector g. Each componentg, of g is given by:
x i

for all x in the group 
g =

number of vectors in the group

The difference E'(g,z) between a group vector g and an incomplete pattern z is given

as:

E (g i — z 1 ) 2

1 g i	 k, z i is known 	 .

number of available components of z (3)

If the pattern z is complete, E'(g,z) E(g,z). Hence, the measure E' is a

generalization of the measure E. An STC site with traffic pattern z is assigned to that

PTC group for which the difference E'(g,z) is minimum, where g is the traffic

pattern for the group.

The existing approaches (Sharma and Allipuram, 1993; Sharma and Werner,

1981) are generally used with the monthly traffic variation. Day-to-day and hour-to-

hour variations can also play an important role in assigning STC sites to one of the

PTC groups. Proper representation of daily and hourly variations in the existing

statistical procedure is difficult due to a large number of daily and hourly patterns.

(2)

E'(g,z) =
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The next section explains how neural networks may be used to group patterns. A

combination of the hierarchical grouping technique and neural networks may make it

possible to group a large number of daily and hourly patterns.

2.1.4 The Kohonen Neural Network (for Classification)

Neural networks are used successfully in a wide variety of applications

including investment, medicine, science, engineering, marketing, manufacturing, and

management (Lawrence, 1993). Neural networks learn from experience (using

inductive learning) and not from programming. Neural networks are good at

recognizing patterns, generalizing, and predicting trends. They are fast and tolerant

of imperfect data, and do not need formulae or rules from the experts in the

application domain.

Researchers have proposed different types of neural networks for solving a

variety of problems (Hecht-Nielsen, 1990; Lawrence, 1993; Zahedi, 1990). In its

most general form, a neural network consists of several neurons. Each neuron

receives inputs from other neurons and (optionally) from the external environment

and produces an output.

There are two different stages in the development of a neural network model:

training and testing. During the training stage, the network uses inductive learning

principle to learn from a set of examples called the training set. The learning process

for the Kohonen Neural Network is unsupervised.. In the unsupervised learning, the

desired output from the neurons is not known. The network attempts to classify

patterns from the training set into different groups. The Kohonen rule (Kohonen,

1988) is used for unsupervised learning which is an example of a learning equation

Since the actual classification is not known, an unsupervised learning model

may be more suitable for the traffic pattern classifications. Researchers have

proposed two different types of neural networks for unsupervised learning (Haykin,
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1994). The unsupervised learning proposed in Linsker's model (Linsker, 1986) can

be used for networks with several output neurons with non-zero outputs. The

unsupervised learning using the Kohonen rule (Kohonen, 1988) uses competitive

learning approach. In competitive learning, the output neurons compete with each

other. The winner output neuron has the output of 1, the rest of the output neurons

have outputs of 0. The competitive learning is suitable for classifying a given pattern

into exactly one of the mutually exclusive classes. The behaviour of such a network

is similar to the hierarchical grouping discussed earlier. Hence, this study uses the

Kohonen network which is based on the competitive learning approach. Fig. 2.1

shows an example of the Kohonen network.

FIG. 2.1 The Kohonen Neural Network
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The network is used to group patterns represented by k-dimensional vectors

into m groups. The network consists of two layers. The first layer is called the input

layer and the second layer is called the Kohonen layer -- named after the scientist

who developed the network. The network receives the input vector for a given

pattern. If the pattern belongs to the ith group, then ith neuron in the Kohonen layer

has a output value of one and other Kohonen layer neurons have output values of

zero. Each neuron in the Kohonen layer is connected to the input layer as shown in

Fig. 2.2.

xl
	 x2	 x3	 x k

FIG. 2.2 Connections between a Kobonen Layer Neuron and Input Layer

Each connection is assigned a weight gi. Weights of all the connections to a

Kohonen layer neuron make up a k-dimensional weight vector g. The weight vector g

for a Kohonen layer neuron is the vector representation of the group corresponding to

that neuron. For any input vector z, the network compares the input with the weight

vector for a group using the measure such as E i(g, z). The pattern z belongs to the

group with minimum value for E'(g,z). The grouping of patterns in the Kohonen

rule is similar to the classification of patterns (possibly incomplete) used by Sharma
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and Allipuram (1993). However, Sharma and Allipuram's approach uses the existing

groups created using hierarchical grouping. The Kohonen neural network, on the

other hand, generates the groups through a learning process as follows: Initially, the

network connections are assigned somewhat arbitrary weights. The training set of

input vectors is presented to the network several times. For each iteration the weight

vector g for a group that is closest to the pattern z is modified using the equation:

gnew = gold + a(t) x z, 	 (4)

where a(t) is a learning factor which starts with a high value at the beginning of the

training process and is gradually reduced as a function of time.

Neural networks can be used to substitute the statistical techniques for grouping of

traffic patterns. Comparing grouping of traffic patterns using the hierarchical

grouping method and the Kohonen neural network, it has been shown(Lingras 95)

that the Kohonen neural network can be used to approximate the hierarchical

grouping technique. The Kohonen neural network also provides an ability to classify

incomplete patterns which is similar to the existing least mean square approach.

Hence, one can say that the Kohonen neural network integrates the hierarchical

grouping of complete patterns and the least mean square approach for classifying

incomplete pattern. It may be advantageous to use hierarchical grouping on a small

subset of typical traffic patterns to determine the appropriate number of groups and

the initial weights, for the neural network. The neural network can then continuously

group new and larger sets of patterns and change its parameters to reflect the

changing traffic patterns. Such an approach may be useful in using hour-to-hour and

day-to-day traffic variations in addition to the monthly traffic volume variations in

classifying highway sections.
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2.2 Neural Networks (for AADT estimation)

Neural networks are good at recognizing patterns, generalizing, and

predicting trends. They are fast and tolerant of imperfect data, and do not need

formulae or rules. Researchers have proposed different types of neural networks for

solving a variety of problems (Hecht-Nielsen, 1990; Lawrence, 1993; Zahedi, 1990).

In its most general form, a neural network consists of several layers of neurons. Each

neuron receives input from other neurons and external environment and produces

output. The output from a neuron can be sent to the external environment or to other

neurons in the network.

This study used a slightly restricted type of neural networks based on

multi-layered, feed-forward, and backpropagation design for unsupervised

and supervised learning. As shown in Fig. 2.3, the networks used in the study consist

of one input layer, one output layer and one hidden layer of neurons. The input layer

neurons accept input from the external environment. The output from input layer

neurons is fed to the hidden layer neurons. The hidden layer neurons feed their output

to the output layer neurons which send their output to the external environment.

Neurons from each layer feed the output only to the next layer and hence the network

is called feed forward.



•
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External environment

Cc) o CD Output layer  

CD CD CD Hidden layer

cp c Input layer c)  
External environment

Fig. 2.3 Multi-layered, Feed-forward Neural Network

The input and output of a neuron are governed by certain mathematical

equations. Fig. 2.4 is used to illustrate the input and output equations used in this

study. It is assumed that neuron, in a given layer is connected to all the neurons

(neuroni ,neuron2 ,...,neuronn ) in the previous layer. The connection from neuron, to

neuron, has the weight wfi . The weights of the connections are initially assigned an

arbitrary value between 0 and 1. The appropriate weights are determined during the

training phase. Input to the neuron, is obtained using the following equation:

input, =	 w„, x output, 	
(5 )

p



neuron

neuronneuron neuron1	 2	 3 neuron 

Figure 2.4 Illustration of feed forward and backward propagation

Output from the neuron, is calculated using the sigmoid transfer function as:

output = f(input i ) = 1+ e vinxinPul i

where gain is a system parameter determined by the system designer to specify the

slope of the sigmoid function around input value of zero. In the proposed network, a

value of 2 is used as the gain. There are several other functions for determining the

output from a neuron. The sigmoid transfer function is chosen because it produces a

continuous value in the 0 to 1 range.

There are two different stages in development of neural network model,

training and testing. During the training stage the network uses inductive learning

principle to learn from a set of examples called the training set. The learning process

can be unsupervised or supervised. In unsupervised learning, the network attempts to

classify examples from the training set into different groups based on input patterns.

In supervised learning, the desired output from output layer neurons for the examples

23
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in the training set is known. The network attempts to adjust weights of connections

between neurons to produce the desired output. During this process, the error in the

output is propagated back from one layer to the previous layer for adjusting weights

of the connections, i.e. the network uses backpropagation method for propagating the

error.

The weights of the connections are modified iteratively. The network is

presented with the training set repeatedly and is allowed to change weights after one

(or more) iteration(s). The weights are modified using a learning equation. This study

uses two of the most popular learning equations, the generalized delta rule for

supervised learning, and the Kohonen rule for unsupervised learning.

The generalized delta rule is a variation of the delta rule. The delta rule was

developed for engineering applications. The objective of the delta rule is to minimize

the sum of the squared errors. The erroi; for neuron is given by

	error i = output i — desired _ output i .,	 (7)

where output, is the actual output and desired_output, is the desired output for

neuron,. The generalized delta rule is used for non-linear transfer functions such as

the sigmoid transfer function used in this study. The generalized delta rule calculates

the weights using the following equation:

" 
new = w old + a x output. x error1 x 	 (input i)	 (8)

where f'(input,) is the derivative of the transfer function evaluated at input, and a is

the learning parameter which represents the speed of learning. For the sigmoid

transfer function used in this study,
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f (input i ) = input ; x (1 — input i ) . 	
(9 )

In the testing stage, the network is tested for another set of examples for

which the output from the output layer neurons is known. After the neural net model

is tested successfully, it is used for predictions.

2.3 Multiple Regression Analysis

Multiple regression analysis is a technique that employs several independent

variables to predict the value of a dependent variable; hence, each of these predictor

variables explains part of the total variation of the dependent variable. The

independent variables are represented by the hourly counts, where as the dependent

variable is represented by the actual AADT volumes.

Multiple regression analysis allows us to exercise statistical control and to determine

the influence of any X(independent variable) on Y(dependent variable). The

techniques of multiple regression are straightforward extensions of those of simple

regression. This study uses three multiple regression models which vary only in the

amount of independent variables. 24, 48, and 168 independent variables are used for

the 24, 48, and 168 hourly counts respectively. It is very difficult to illustrate

hyperplanes of these degrees. Therefore for the purpose of simplicity, multiple

regression will be explained in the following section using two independent variables.

The following subsections were adapted from Kohler 88.

2.3.1 Multiple Regression (2 independent variables)

Let us consider the case in which one dependent variable, Y, is related in linear

fashion, to two independent variables, X 1 and X2. (Y may be actual AADT, X i and X2



may be two hourly traffic volumes). The first goal of the analysis of such a case is

the establishment of an estimated multiple -regression equation, such as

Y' = a + MCI +b2X2.	 (10)

This equation gives us the estimated value, Y' , of the dependent variable for any

specified pair of values of the independent variables. There exists three estimated

regression coefficients, a, b 1 and b2 . Their meaning is easy to comprehend: a is the

estimated value of Y when X 1 = X2 = 0; b 1 gives us the change in Y(also referred to

as the partial change or net change in Y) associated with a unit change in X I when X2

is held constant; while b2, similarly, equals the change in Y associated with a unit

change in X2 when X 1 is held constant. The values of b 1 and b2 are called the

estimated partial-regression coefficients; they are, in fact, the partial derivatives of Y

with respect to either X 1 or X2. This multiple regression equation corresponds to a

plane in three-dimensional space. The multiple regression equations used in this

study correspond to hyper-planes of degree 24, 48, and 168.

2.3.2 The Regression Plane

In our three-variable case, three observations are made for each sample unit: one for

the value of Y, one for X 1 , and one for X2. These observations are depicted in Figure

2.5.

26



Figure 2.5 Sample Point in three-dimensional Scatter Diagram

If there are many sample observations, such as those depicted in figure 2.6, a plane

will be represented. The three-variable multiple regression technique estimates the

multiple regression equation (10) in such a way that all the estimates derived from it

fall on a surface, such as the shaded area ABCD in our graph(figure 2.6), that is

called the regression plane and that is positioned among the sample points in such a

way as to minimize the sum of the squared vertical deviations between these sample

points and their associated estimates.
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Figure 2.6 The Regression Plane

In figure 2.6, the observed sample points(or actual values of Y for any given

combination of X 1 and X2) are represented by dots which are paired with x's by a

line. The associated estimates, Y', are represented by the x's lying on the shaded

plane. These crosses, of course, are positioned immediately below or above the

paired dots, depending on whether the latter are suspended above or below the

regression plane.

28

We can also note the values of the regression coefficients in figure 2.6. The value of
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a estimates Y for XI=X2=0; hence, it is the Y intercept, equal to distance OA in the

graph. The value of b 1 is the slope of the regression plane when holding X2

constant(at any desired level). Imagine cutting the regression plane parallel to the X 1

axis at X2=0. The cut would trace line AB in the YX 1 plane and show the value of Y

rising from OA at X 1 =0 to EB at X 1 =0E. The slope of line AB, relative to OE, equals

b 1 . Imagine instead cutting the regression plane parallel to the X 1 axis at X2=0F. The

cut would trace line DC and show the value of Y rising form FD at X 1 =0 to GC at

X 1 =0E. The slope of line DC, relative to FG, also equals b 1 . Thus b 1 always

indicates how Y changes with X 1 , while not changing X2.

Finally b2, is the slope of the regression plane when holding X1 constant(again at any

desired level). Imagine cutting the regression plane parallel to the X2 axis at X 1 =0.

That cut would trace line AD in the YX2 plane and show the value of Y rising(even

though slightly) from OA at X 2=0 to FD at X2=0F. The slope of line AD, relative to

OF, equals b2 . Imagine instead cutting the regression plane parallel to the X2 axis at

X 1 =0E. The cut would trace line BC and show the value of Y rising from EB at X 2=0

to GC at X2=0F. The slope of line BC, relative to EG, also equals b2. Thus, b 2

always indicates how Y changes with X2, while not changing X 1 .

2.3.3 Multiple Regression with three or more independent variables.

When simple regression analysis turns into multiple regression analysis, hand

calculations become quit burdensome. The principles involved remain the same as

the number of variable rises, but the calculations, luckily can nowadays be performed

by computer.

When three independent variables are involved, the computer finds an estimated

least-squares regression of the form,
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Y' = a + b 1 X i + b 2X2 + b3X3,

and this procedure can be extended without end when additional predictor variables

are included in the analysis(by adding b4X4, b5X5, and so on to the equation).

The moment the analysis involves four variables(one dependent and three

independent ones), the data can no longer be pictured in a scatter diagram. The

human mind can envision up to three dimensions, but it balks at four dimensions and

more.
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Chapter 3

'c lassification ctae,L_Les

PTC data collected in the years 1985 to 1989 and 1991 was used in the

experiments. The traffic pattern for each year at each PTC was treated as a separate

annual traffic pattern. This resulted in 264 annual traffic patterns. In the first

classification scheme, the true classification was established using the complete

annual traffic data. All the available annual traffic patterns were grouped using the

Kohonen Neural networks based on twelve monthly factors (Sharma and Werner,

1981) into five groups. A monthly factor is given by:

monthly factor — MADT

where 	 (12)
MADT = monthly average daily traffic volume.

Second column in table 3.1 shows the number of annual patterns in each of the five

groups. The annual patterns were then separated into train and test sets by randomly

choosing a few annual patterns as test patterns. This division resulted in 211 training

patterns and 53 test patterns. Columns 3 and 4 in table 3.1 show the number of

training and test patterns for each of the groups.

Group Total Train Test

0 9 7 2
117 94 23

2 7 5 2
3 18 13 5
4 88 71 17

Total 264 211 53

AADT'

Table 3.1 Number of Annual Patterns



The short term Seasonal Traffic Counts (STCs) are carried out at different

times and they also vary in terms of the duration of the count. The schedule of STC

programs suggested in the literature and practised by highway agencies is diverse

(Albright, 1991). In order to compare results for diverse STC programs, this study

used different time periods and duration of short term seasonal counts. The

preliminary experiments indicated that the seasonal counts in July generally provide

better estimations than any other month. Moreover, many of the short term counts

generally take place during summer months. Three time durations, namely one day

(24 hours), two days (48 hours) and week long (168 hours) starting on a Monday in

July were chosen to limit the number of possible combinations. Tables 3.2 shows the

number of short term traffic patterns used for training and testing for the five groups

obtained from classification based on annual patterns as well as for the combined

class.

24 Hour Patterns 48 Hour Patterns 168 Hour Patterns
Group Train Test Train Test Train Test

0 36 9 34 9 28 7
1 524 56 501 52 426 45
2 28 5 27 4 23 4
3 83 15 81 14 67 12
4 408 44 390 42 330 37

Total 1079 129 1033 121 874 105
Table 3.2 Number of Patterns

Grouping Based on Annual Patterns

The seasonal traffic counters do not provide the complete annual data

necessary for the true classification. Hence, on the other end, all the PTCs are

grouped in one class and the factors and neural network models are developed for the

single class. The numbers corresponding to the combined class are shown in

table 3.3.
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24 Hour Patterns 48 Hour Patterns 168	 our Patterns

Train Test Train Test Train Test

Total 973 235 926 228 784 195
Table 3.3	 Number of Patterns

Non-Grouping

In practice, it is not possible to classify the STCs based on the annual data.

However, combining them in one single group does not provide good estimations.

Traffic engineers use their subjective judgment to classify the STCs into one of the

traffic classes established by classification of PTCs. Such a subjective judgment may

or may not be based on the available short term traffic count data. This study used an

objective classification of the short term traffic patterns obtained from the training set

of annual patterns using the Kohonen neural networks. The Kohonen network thus

obtained was used to classify the short term traffic patterns obtained from the test set

of annual patterns. Table 3.4 shows the number of short term traffic patterns in each

of the five groups.

24 Hour Patterns 48 Hour Patterns 168 Hour Patterns

Group Train Test Train Test Train Test

0 117 20 45 7 164 41
1 130 28 242 72 105 27
2 210 36 203 36 168 14
3 221 60 96 15 290 81
4 295 91 340 98 157 32

Total 973 235 926 228 784 195
Table 3.4.	 Number of Patterns

Grouping Based on Short Term Patterns



34

Chapter 4

Description of Models

This section describes the details of neural network models, multiple regression

models and the conventional factor-based model used in the study.

4.1 Factor Model

The conventional approach uses average factors for estimating AADT. The

average factor is defined as:
AADT 

factor — 1= SADT	(13)
n

where:
SADT = 	 Average Daily traffic volume recorded during the short term count,
AADT = actual AADT,
n 	 = 	 number of short term patterns.

The factors thus calculated are used in the estimation of AADT for an STC site as

follows. First, the STC site is classified into one of the five groups. The SADT,

computed from the STC data is used along with the factor of the group to estimate

AADT as:

estimated AADT = SADT x factor .	 (14)

4.2 Neural Network Model

The neural network approach uses three network designs for the 24-hour, 48-hour

and 168-hour short term patterns. Each network design consists of three layers of

neurons, an input layer, a hidden layer and an output layer. The number of neurons in
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each layer for the three designs are shown in table 4.1.

Duration Input Hidden Output

24 hours 24 13 1
48 hours 48 24 1
168 hours 168 85 1

Table 4.1 Number of Neurons in a Layer

The input pattern consists of the ratios of

hourly traffic volume	 (15)
SADT

for each hour in the short term count. The output of the neural network consists of the
ratio

AADT 

SADT •
(16)

For each training set described in section 3, a neural network is trained using the

appropriate neural network design.

4.3 Multiple Regression Model

The Multiple Regression approach also incorporated three designs for the 24-hour,

48-hour and 168-hour short term patterns. The number of independent variables were

directly proportional to the degree of the hourly count(i.e. 24, 48, 168 independent

variables were used for_ the 24-hour, 48-hour and 168-hour short term patterns

respectively) . As in the neural network model the input patterns consisted of the

ratios shown in equation 15, for each hour in the short term count. The dependent

variable of analysis consisted of the ratio shown in equation 16.

For each training set described in section 3, a multiple regression model was



constructed using the appropriate design.

4.4 Testing the Models

The conventional factors, multiple regression models and the trained neural

networks were tested using the test set. Errors in estimation for the test set may

originate from two sources. One of the sources of errors is the sampling process. The

number of patterns in training and test sets might be very small, or the samples may

not provide a good representation of the universe. The other source of error is the

estimation method itself. In order to get an indication of the errors from these two

different sources, the conventional factors and the trained neural networks were tested

for training set as well as the test set. Testing the models using the training set

indicates how well the training method works by itself.

The values of estimated and actual values of AADT are compared using the

following percent difference measure.

A = estimated - actual x 100
actual

(17)

where
A = percent error

actual = actual AADT
estimated = estimated AADT

The maximum and average errors for each set are used to compare the results

of estimation. The average error provides a measure of the overall accuracy, while

the maximum error describes the worst case.

36
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CI; pter 5

Results and Analysis

Tables 5.1(a) and 5.1(b), show the results obtained from neural networks,

multiple regression, and the conventional method for 24 hour counts using the true

classification with the train and test data respectively. For the training set(Table

5.1(a)), the average errors for neural networks range from 5.7% to 13.1%, while the

maximum errors range from 27.7% to 86.2%. The average errors for the conventional

method range from 6% to 20.3%, and the maximum errors range from 68.8% to

160.6%. The average errors for the multiple regression model range from 3.9% to

7.5%, and the maximum errors range from 20% to 70.1%. The errors for the test

data(Table 5.1(b)) are somewhat higher due to sampling errors. The average errors

for neural networks range from 5.1% to 19.7%, while the maximum errors range

from 20.6% to 46.1%. The average errors for the conventional method range from

5.4% to 24.3%, and the maximum errors range from 24.4% to 102.4%. The average

errors in the regression model range from 5.0% to 22.6%, and the maximum errors

range from 19.7% to 54.4%. The errors for the neural network and multiple

regression models are consistently lower than the conventional method with the

exception of group 0 test data. The neural network model produces slightly lower

errors than multiple regression in half the cases.
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Group Neural Nets Factors Regression
Max Avg. Max Avg Max Avg

0 86.2% 13.1% 160.6% 20.3% 23% 6.2%
1 58.6% 5.7% 96.8% 6.0% 70.1% 5.7%
2 45.4% 8.0% 114.8% 12.9% 20.0% 3.9%
3 36.7% 8.3% 138.0% 14.9% 37.5% 7.5%
4 27.7% 6.5% 68.8% 10.4% 29.7% 6.5%

Table 5.1(a) Train Set

Group Neural Nets Factors Regression
Max Avg. Max Avg. Max Avg.

0 44.7% 14.5% 92.0% 16.3% 42.4% 22.6%
1 20.6% 5.1% 24.4% 5.4% 20.4% 5.0%
2 46.1% 19.7% 102.4% 24.3% 36% 20.8%
3 45.6% 10.9% 81.5% 17.5% 54.4% 11.5%
4 20.8% 6.0% 42.4% 8.5% 19.7% 6.2%

Table 5.1(b) Test Set

Table 5.1 Errors for 24 hour count for Grouping Based on Annual Patterns

The errors for 48 hour counts (Tables 5.2(a) and 5.2(b)) are significantly lower

than those for 24 hour counts. For the training set(Table 5.2(a)), the average errors for

neural networks range from 3.7% to 6.3%, while the maximum errors range from 9%

to 22.9%. The average errors for the conventional method range from 5.2% to 16.1%,

and the maximum errors range from 39.1% to 83.9%. The average errors for the

multiple regression model range from 4.1% to 5.0%, while the maximum errors range

from 16.6% to 23.6%. The multiple regression model contains table entries

containing N/A, this indicates there were not enough observations to complete the

analysis. Multiple regression analysis requires at least as many observations as

independent variables. Table 3.2 shows the number of observations used in each
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group for the annual grouping classification method. For groups 0 and 2 there were

less than 48 observations, thus insufficient to carry out the multiple regression

analysis. This becomes even more of a problem in the case of 168 hourly counts as

we will see. The errors for the test data(Table 5.2(b)) are somewhat higher due to

sampling errors. The average errors for neural networks range from 4.5% to 15.3%,

while the maximum errors range from 13.3% to 42.9%. The average errors for the

conventional method range from 4.9% to 16.9%, and the maximum errors range from

16.1% to 55.8%. The average errors for the multiple regression model range from

4.2% to 22.4%, while the maximum errors range from 12.8% to 61.2%. The error for

the neural network model and multiple regression model are consistently lower than

the conventional method. The multiple regression and neural network model are very

similar in their results.

Group Neural Nets Factors Regression
Max Avg. Max Avg. Max Avg.

0 12.3% 5.8% 83.9% 16.1% N/A N/A
1 22.9% 4.3% 48.8% 5.2% 23.6% 4.1%
2 9.0% 3.7% 63.0% 9.5% N/A N/A
3 17.0% 6.3% 71.1% 12.4% 16.6% 4.7%
4 20.6% 5.4% 39.1% 8.2% 17.8% 5.0%

Table 5.2(a) Train Set

Group Neural Nets Factors Regression
Max Avg. Max Avg. Max Avg.

0 19.0% 6.2% 54.0% 13.7% N/A N/A
14.3% 4.5% 16.1% 4.9% 12.8% 4.2%

2 13.3% 6.3% 48.9% 16.9% N/A N/A
3 42.9% 15.3% 55.8% 15.6% 61.2% 22.4%
4 22.2% 6.4% 26.8% 6.6% 22.0% 6.1%

Table 5.2(b) Test Set
Table 5.2	 Errors for 48 hour count for Grouping Based on Annual Patterns



40

The 168 hour counts show further reduction in errors. For the training

set(Table 5.3(a)), the average errors for neural networks range from 2.3% to 4.1%,

while the maximum errors range from 5.5% to 13.7%. The average errors for the

conventional method range from 4.4% to 11.6%, and the maximum errors range from

24.6% to 36.3%. The average errors for the multiple regression model range from

1.9% to 2.1%, while the maximum errors range from 8.4% to 10.0%. Groups 0,2,

and 3 had a insufficient number of observations(i.e. # of observations < 168, table

3.2) to carry out the multiple regression analysis. The errors for the test data(Table

5.3(b)) are somewhat higher due to sampling errors. The average errors for neural

networks range from 3% to 7.7%, while the maximum errors range from 15.2% to

25%. The average errors for the conventional method range from 3.1% to 22.7%, and

the maximum errors range from 9.3% to 37.5%. The average errors for the multiple

regression model range from 4.3% to 4.5%, while the maximum errors range from

16.1% to 17.3%. The reduction in errors from 48 hour counts to 168 hour counts is

not as significant as the reduction in errors from 24 hour counts to 48 hour counts.

This observation indicates that 48 hour counts may be cost effective solution for the

estimation of AADT volumes.

Group Neural Nets Factors Regression
Max Avg. Max Avg Max Avg

0 13.7% 4.1% 34.9% 11.4% N/A N/A
1 7.1% 3.1%_ 24.6% 4.4% 10.0% 2.1%
2 5 . 5% 2.3% 35.4% 11.6% N/A N/A
3 10.1% 3.1% 35.0% 7.8% N/A N/A
4 8.0% 2.7% 36.3% 4.9 8.4% 1.9%

Table 5.3(a) Train Set



Group Neural Nets Factors Regression
Max Avg. Max Avg. Max Avg.

0 17.6% 5 . 5% 15.1% 4.2% N/A N/A
1 16.6% 3.0% 9.3% 3.1% 16.1% 4.3%
2 18.1% 7.4% 37.5% 22.7% N/A N/A
3 25.0% 7.7% 20.0% 8.5% N/A N/A
4 15.2% 3.5% 13.3% 4.5% 17.3% 4.5%

Table 5.3(b) Test Set

Table 5.3	 Errors for 168 hour count for Grouping Based on Annual
Patterns

When a single group is used, the maximum errors for the three time intervals

range from 34.8% for 168 hour counts to 312.8% for 24 hour counts (Tables 5.4(a

and b)). The average errors range from 4.7% to 13.8%. Very high errors for 24 hour

counts further reinforces the conclusion that at least 48 hour counts should be used

for AADT estimation.

It is interesting to note that the errors for neural networks without classification

(tables 5.4(a and b)) compare favourably with errors for the conventional method

with the true classification (tables 5.1(a and b)). This observation seems to suggest

that the neural networks implicitly classify patterns during the estimation of AADT.

This observation is important because in practice the true classification of STC sites

is unknown. But the results from this study indicate that the neural networks with no

classification of STC sites can perform as good an estimation as conventional method

which assumes that true classification of STC sites is known.

The neural network model consistently outperformed the multiple regression

model(with exception to the train set 24 hour counts) for the non-grouping

classification scheme. However the differences in error levels between the two

models were marginal.

41
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Neural Nets Factors Regression
Max Avg. Max Avg Max Avg

174.5% 8.4% 312.8% 13.8% 213.0% 9.3%
51.7% 6.0% 186.3% 11.2% 83.8% 6.9%
34.8% 4.9% 123.1% 11.3% 37.6% 4.7%

Duration

24 hours
48 hours
168 hours

Max MaxAvg. Avg.MaxAvg.
Duration Neural Nets Factors Regression

24 hours 77.6% 10.0% 181.5% 15.0% 102.0% 11.0%
48 hours 79.3% 8.9% 143.7% 12.7% 84.9% 9.3%

60.6% 7.5% 130.0% 13.6% 57.7% 7.8%168 hours

Table 5.4(a) Train Set

Table 5.4(b) Test Set
Table 5.4	 Errors for different duration counts with no Grouping

In practice, the true classification of STC sites is not known. However, the

extreme classification scheme of combining all the highway sites in one group may

not necessarily be the correct approach to AADT estimation. Tables 5.5 to 5.7 show

the results obtained by grouping the highways sites based on short term patterns.

Barring a few anomalies, neural networks and multiple regression analysis provide

better results than the conventional method for 24 hour, 48 hour, and 168 hour

counts. The neural network model marginally outperformed the multiple regression

model. As expected the classification based on short term patterns provides better

results than the classification scheme which uses a single group (tables 5.4(a) and

5.4(b)). However, these results are not as good as those obtained using the true

classification (tables 5.1 to 5.3).



Group
Neural Nets Factors Regression

Max Avg. Max Avg Max Avg
0 171.0% 15.7% 270.2% 24.7% 164.8% 16.2%
1 56.5% 10.0% 149.5% 17.0% 59.4% 10.2%
2 12.1% 3.8% 21.1% 4.1% 14.4% 3.5%
3 51.5% 6.9% 54.8% 8.6% 51.8% 6.8%
4 52.5% 5.7% 64.2% 6.2% 53.7% 5.5%

Table 5.5(a) Train Set

Group Neural Nets Factors Regression
Max Avg. Max Avg. Max Avg.

0 49.0% 16.4% 51.7% 20.3% 77.7% 21.3%
1 57.2% 17.6% 130.9% 31.4% 64.0% 19.1%
2 12.4% 4 . 8% 14.2% 4.1% 13.0% 4.8%
3 66.5% 8.9% 58.2% 8.45% 65.5% 9.2%
4 71.8% 7.8% 84.5% 8.0% 78.3% 7.6%

Table 5.5(b) Test Set

Table 5.5. Errors for 24 hour count for Grouping Based on Short Term
Patterns

Group Neural Nets Factors Regression
Max Avg. Max Avg Max Avg

0 16.1% 6.7% 111.0% 17.3% N/A N/A
1 60.7% 8.0% 92.3% 11.7% 58.7% 7.7%
2 12.9% 3.7% 20.9% 4.2% 13.3% 3.2%
3 9.4% 4.2% 38.1% 11.0% 9.0% 2.8%
4 36.9% 5.7% 46.4% 5.9% 32.7% 5.2%

Table 5.6(a) Train Set
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Group Neural Nets Factors Regression
Max Avg. Max Avg. Max Avg.

0 80.8% 21.1% 79.6% 23.7% N/A N/A
1 72.8% 10.7% 102.5% 13.0% 76.1% 11.3%
2 14.3% 4.2% 9.8% 3.8% 12.8% 4.5%
3 15.4% 5.7% 21.9% 10.3% 21.8% 7.9%
4 70.7% 7.9% 76.6% 7.2% 68.0% 7.5%

Table 5.6(b) Test Set

Table 5.6.	 Errors for 48 hour count for Grouping Based on Short Term
Patterns

Group Neural Nets Factors Regression
Max Avg. Max Avg Max Avg

0 13.7% 5.0% 65.9% 13.9% N/A N/A
1 6.2% 2.0% 23.2% 4.6% N/A N/A
2 8.8% 2.4% 98.2% 11.6% N/A N/A
3 16.9% 4.6% 84.5% 7.6% 13.5% 2.9%
4 13.9% 2.6% 36.0% 6.3% N/A N/A

Table 5.7(a) Train Set

Group Neural Nets Factors Regression
Max Avg. Max Avg. Max Avg.

0 60.0% 14.6 101.2% 21.1% N/A N/A
1 28.6% 7.2% 9.2% 4.3 N/A N/A

85.1% 10.4 98.6% 12.7 N/A N/A
3 57.5% 7.9% 46.4% 8.1% 48.4% 7.6%
4 11.6% 3.8% 15.6% 6.1% N/A N/A

Table 5.7(b) Test Set

Table 5.7. Errors for 168 hour count for Grouping Based on Short Term
Patterns

44



45

Due to the tabular nature of the resultant data, it is difficult to visualize the results.

Therefore I have provided three graphs which represent the three classification

schemes. Within each graph, the three estimation models are compared to each other.

The comparison measure is the percentage error in estimation of the AADT volume

versus the hourly count period. For the annual grouping and short term classification

schemes I have only shown the results of one group in the graphs.

For the annual grouping classification scheme(Graph 5.1), we see that the factor

model produces the worst performance(greatest error). It is represented by the line

with the triangular nodes. The factor model is consistently worst than the neural

network model(line with the square nodes), and almost consistently worst than the

multiple regression model(line with circular nodes) with the exception of the 168

hourly count. This exception is most likely due to sampling errors. The neural

network model is marginally worst than the multiple regression model for the 24 and

48 hourly counts. It should be noted that when viewing all the data from all five

groups for the annual grouping scheme, the neural network model more often

performs marginally better than the multiple regression model. Another important

point that the graph illustrates, is the error levels decrease as the duration of the

hourly count increase. From 24 to 48 hours, all three models increase in

performance. This is to expected due to the extra data. The same is true for the

transition to the 168 hourly count from the 48 hourly count, with exception to the

multiple regression model, which is most likely due to sampling errors.
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2 . 3
24 48 168

Hours
Neural Networks 	 Factors

_o_ Linear Regression

Table 5.1 Annual Grouping Classification scheme for Group 1 -

Test Data

The next graph(Graph 5.2) depicts the results for the non-grouping scheme. This

graph reflects the majority of the results. The factor model produces the worst

results, the linear regression model is marginally higher in error levels than the neural

network model, and the neural network model produces the best results compared to

the other two models. This graph also shows the direct correlation between error

level and hourly count(as sample duration increases, the error level decreases). This

is in exception to the factor model for the 48 to the 168 hourly count, which is likely

due to sampling errors. The amount of performance benefits between 24 and 48, and,

48 and 168, is approximately the same. This demonstrates that the performance gain

is not as drastic from the 2 day count to the 7 day, as from the 1 day count to the 2

day count, considering the need for the STC on site for the extra five days.
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No Grouping

10

8  

6
24 	 48
	

168
Hours

_. Neural Networks _I, Factors
Linear Regression

Table 5.2 Non-grouping Classification Scheme - Test Data

The last of the classification schemes is the one based on short term patterns and is

shown in graph 5.3. Sampling errors are more evident in this graph, and are

demonstrated by the factor model decreasing in performance between the 24 and 48

hour count, and the neural network model decreasing in performance between the 48

and 168 hourly count. For this graph we will focus our attention on the 48 hourly

count. The neural network model performs the best followed by the multiple

regression model and then the factor model.
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Table 5.3 Classification based on short term patterns for Group 3 -

Test Data

By viewing and comparing all three graphs, it is evident the annual grouping

classification scheme produces the best results. The non-grouping scheme provides

the worst results and the classification based on short term patterns is in the middle.

168
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Chapter 6

Summary and Conclusions

This study compared the estimation of AADT using the conventional factor

based approach, multiple regression analysis, and the neural network approach. The

estimation was based on 24 hour, 48 hour and 168 hour short term counts.

Classification of highway sites is an important factor in the estimation procedures.

Hence, three different classification schemes were used. The first classification

scheme used the true classification based on annual patterns. Since the annual

patterns are unavailable for the seasonal traffic counter sites, the second classification

scheme combined all the highway sites in a single group. Between these two extreme

classification schemes there was a third classification scheme which classified

highway sites according to the short term traffic patterns. These short term traffic

patterns are available for all the highway sites under investigation.

For all the classification schemes used in the study, the neural networks and

multiple regression consistently outperformed the conventional method. The neural

network model in many cases slightly outperformed the multiple regression model.

The true classification scheme provided the best results for all three approaches. The

errors for the second classification scheme, which combined all the highway sites in a

single group, were the highest. The third classification scheme, based on the short

term traffic patterns, provided results which were better than the second scheme but

worse than the first scheme. Even though an accurate classification scheme yields the

best results, such a classification is not possible for STCs. The classification of STCs

is generally based on the judgment of traffic engineers who are the domain experts.

The third classification scheme based on the short term traffic patterns, provides an

objective classification method which can be used in practice. The third classification



50

scheme also provides reasonably accurate estimates of AADT.

Another interesting conclusion that follows from this study is related to the

duration of the short term traffic counts. The results obtained from 48 hour traffic

counts are substantially better than the 24 hour traffic counts. However, the

improvement with week-long counts over the 48 hour counts is not significant

enough to justify an additional five days of counting. That is, 48 hour traffic counts

are cost-effective data collection schedules for the estimation of AADT.
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Glossary

AADT 	 Annual average daily traffic.

Classification = A process of grouping data patterns into classes of similarity.

E(x,y) 	 Mean square error between two complete patterns x and y.
(g, z) = Mean square error between a complete pattern g and an incomplete

pattern z.

Generalized Delta Rule = A learning technique used in a supervised learning neural
network configuration.

g, x, z, y 	 Vectors representing traffic patterns.

Hierarchical grouping = technique used to group a set of k-dimensional vectors
Kohonen Neural Network = A neural network configuration for unsupervised

learning.

MADT 	 = Monthly average daily traffic.
Multiple Regression = A type of statistical analysis procedure which requires the use

of more than one independent variable(i.e. 24, 48, or 168).

Pattern • a k-dimensional vector of degree 24, 48 or 168, where each
dimension is represented by a hourly count.

PTC 	

• 

Permanent Traffic Counter

SADT 	 Seasonal Annual Average Daily Traffic

STC 	

• 

Seasonal Traffic Counter

t
	 = Time.
a(t)
	

Learning parameter in the Kohonen rule expressed as a function of
time.
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