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Abstract

This report details the investigation into the effect of several artificial neural network

(ANN) architectures on the ability of these networks to predict highway traffic volumes (HTVs).

The scope of this project is intended as a basis for further research by determining favourable

choices for an underlying network architecture which may be expanded to incorporate recurrent

temporal sensitive features. This will be determined on the basis of the errors that the predicted

traffic volumes deviate from the target values in the training set. The training phase of the

models will exclude data for up to a year to allow for the performance evaluation of the trained

networks.
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CHAPTER 1

INTRODUCTION

The knowledge of short term performance is useful in day-to-day decision making

regarding scheduling and resource allocations. Modelling of short term performance will include

the continuous and adaptive prediction of the immediate future demand for the facilities.

Statisticians and computer scientists have used a variety of techniques such as different variations

of autoregressive models, multivariate adaptive regression splines, and recurrent or time delay

neural networks. Each of these methods has different advantages and disadvantages. This project

shall test models for highway traffic analysis by exploring the use of neural networks. It will

begin with non-recurrent neural network designs which may then progressively combine the

useful features of the existing techniques to develop a spatio-temporal network model for

prediction of highway traffic usage on a continuous basis.

1.1 Scope of Project:

The purpose of this project has been modified from the original goals outlined above due

to time constraints. The new objective is to test several different designs for the proposed neural

networks which may later be further developed to accommodate the original goals of creating

temporal recurrent network models. The different designs developed and tested under this project

shall provide an indication of which general structures will be best suited for continuous

prediction of highway traffic volumes (HTVs).

All the models will be tested for highway traffic based on existing data but may be
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extended to model computer network usage. The models developed for computer network usage

may be used to evaluate alternate schedules and may even be extended to include performance

analysis of other computer facilities. The results of this project may be compared with traditional

statistical methods to determine the relative effectiveness of each as a predictive model or to

propose a potential merging of neural network and statistical methodologies.

This project will consider two different data models with variations on the network

architectures and the predicted output sets. The use of different input combinations shall be

explored by using the traffic volumes from the previous week of the current year, and those from

the current week of the previous year as input. Subdividing the problem domain shall also be

tested in two ways. The two different input combinations shall be used on an hourly basis to

predict each of 168 hourly traffic volumes for a given week, and again on a daily basis to predict

the seven daily traffic volumes for a given week. Each of these shall incorporate two different

choices for the number of hidden layer neurons to use, which generates eight different ANNs so

far. The second subdivision scheme, predicting daily volumes, shall be repeated using seven

individual networks, one for each day of the week. The seven individual daily networks may

then be recombined in a "wrapper" network, thus becoming indistinguishable from a single larger

unit to the external environment. They shall be tested with only the previous week of the current

year as input.

The design schemes above shall result in fifteen networks in total for training. This

should be adequate to provide a good indication of the best approach to use as the foundation

for future modifications to incorporate time-delay constructs. The scope of this work and the

time constraints of an under-graduate thesis project prevent the pursuit of the original goals
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presented in the original proposal. Namely, the networks shall be designed, constructed, and

trained but, not tested. However, they will be trained with a subset of the available data to

permit testing at a later date with up to a full year of previously unused data.

The measure of effectiveness or predictive correctness of the networks shall be made with

a basic comparison of the percentage errors between the actual target values and the network

estimated values. Unfortunately, the comparison of the neural networks' predictive ability with

that of more traditional statistical methods will not be addressed at this time.

1.2 ANN Concepts:

ANNs are greatly simplified general models based on the structure and behaviour of the

human brain which are composed of nodes, equivalent to biological neurons, and connections,

analogous to biological synapses. Neural networks are graph structures which are generally fully

connected between layers initially, then the training will adjust the connection weights and those

which may not be required for, or influence, the output will be reduced, possibly to zero (i.e.

eliminated). The ANN life cycle consists of the following stages: a construction phase, a training

phase, a testing phase, and a implementation phase.

These phases of the neural network life cycle occur in the order listed above with the

initial construction phase having the obviously intuitive meaning. The training phase is an

adaptive, or dynamic, process when the ANN learns how to process the data based on a series

of known data presented as input which are also used to compare with the estimated output. The

estimated output values and actual target output value provide the means to calculate the error

by which the estimated values deviate from the targets. This error is used during back-
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propagation to modify each connection weight that influences a particular output so that it would

have generated the correct output during this cycle. This is repeated for an entire epoch

consisting of a predetermined number of cycles (25000 maximum in this case) each consisting

of the entire data set (approximately 250 weeks of data covering five years in this case).

The testing phase is a static process where the trained network is employed to predict

outputs based on a previously unused known data set. Any errors generated during this phase

are recorded to measure the network performance but, not used to modify the structure of the

network. If the errors fall below a predefined threshold the network may be implemented,

otherwise a determination must be made on where the problem lies and how to correct it. This

would repeatedly generate a new network structure which may be trained on the same training

data set previously employed until satisfactory results are obtained.

The implementation phase also has an obviously intuitive meaning, however there are two

major methods which may be used at this point. A common way of implementing the trained

and tested ANN is in a static state which is adequate if the problem domain presents a reasonably

stable situation which the ANN is to model. However, some systems, such as the highway traffic

prediction model, present an ever changing state (always increasing in this case) which would

render a static model ineffective after a period of time. This is where continuous adaptive

prediction would be of benefit such that the model should be non-linear and have the ability to

predict future demand on a continuous basis. Using a continuous adaptive technique the actual

values of the predicted demand will be used to adapt the network to improve its prediction ability

throughout its useful lifetime.

The remainder of this report is organized in the following manner:
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Chapter 1 presents the background information required for understanding the content of

this report and the context of the material within the stated problem domain.

Chapter 2 presents the material reviewed in the process of the research performed to

formulate this discussion.

Chapter 3 presents the methods and materials employed in this project, and the problems

encountered.

Chapter 4 presents the results obtained, along with some statistics regarding the

performance of the networks and the resources used to create them.

Chapter 5 presents derived conclusions and solutions for overcoming the problems

encountered. Also included here are recommendations for potential further analysis or research.
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C. PTER 2

BAC iGROUND

At this point an overview of some of the general information discovered during the

literature review required for this undertaking shall be presented. This shall begin with some

general definitions of terms relevant to Artificial Neural Networks then a discussion of the

Ulbricht experiments.

2.1 ANN Terminology:

Node

This is the artificial equivalent of a biological neuron. The nodes are grouped into three

classes of layers, Input, Hidden, and Output. This naming convention simply refers to the

logical arrangement of the nodes from an external black-box perspective such that input

nodes can accept data from outside world, output nodes can send data to outside world,

and hidden nodes cannot be referenced externally at all.

Bias node:

Is generally set to a value of one and used as an additional input for all first hidden level

nodes to act as a damper which prevents erratic data from adversely changing the weights

prematurely. Also, it will aid in slowing down the rate that the connection weights

change, which will prevent excessive oscillations on those changes.

Connection

This is the artificial equivalent of a biological synapse. The connections are weighted
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with a value used to determine how much significance each individual node will

contribute to the summed input of the node that it is connected to.

Figure 2.1 Nonlinear Model of an Artificial Neuron

Connection Weight

This is usually set to a value between -1 and +1. A positive weight enhances the

influence of input on a result, and a negative weight inhibits inputs which are not required

or less important to the result. They are not necessarily between 0 and 1 however,

normalizing the values to between 0 and 1 prevent the ANN from producing excessively

large output values, also this will prevent runaway accumulation of trends in data.

Epoch
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One complete propagation of all sets of input values through the entire network. This

includes cycles through the network which propagate individual data sets in a feedforward

and back-propagation direction. There is a great deal of conflict in the literature on this

terminology so this report will use the convention that an epoch indicates the use of the

entire training set.

Transfer (Activation) Function

The mathematical equation employed to derive the value applied to the node input from

the summed outputs of the preceding level. The three basic types are: Threshold (step)

Function, Piece-wise Linear Function, and Sigmoid Function. The threshold values on

the linear functions are arbitrary, and dependant on your application. The sigmoid family

of functions are the most commonly used. They can be any nonlinear function which is

smooth and continuous, thus, differentiable. This is because the inverse of the transfer

functions are used as back-propagation (error) functions which are used during the training

phase of the ANN life cycle

Error (Back-Propagation) Function

The mathematical equation employed to derive a "corrected" weight based on its resultant

output error. If the transfer function was non-linear (i.e., a sigmoid function), this will

be the differential of the transfer function. In that case, a transfer function is generally

chosen which will be easy to differentiate.

Feedforward

Feedforward simply refers to the flow of data through the network during each cycle

(epoch). This applies to the training, testing, and implementation phases of an ANNs life
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span.

Back-propagation

Refers to the adjustment of connection (synapse) weights based on output errors (i.e., the

difference between the predicted and target output values) which are applied from output

to hidden, and hidden to input layers successively. This applies to the training and

adaptive implementation phases.

Recurrent (Feedback-propagation)

Refers to the method where connections are added which use the output of one or more

neurons as input applied to other neurons in the network during the successive network

cycle. These additional connections apply their inputs to the given neurons summed

along with the original input values from all existing feedforward connections. Recurrent

Figure 2.2 Fully Connected Recurrent A_ificial Neural Network
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networks are a special case of time-delay ANNs where the delay is one cycle rather than

two, three, or more. This method applies to the training, testing, and implementation

phases, however, this is a network structural concept as well as a data flow issue like the

previous two definitions.

2.2 Literature Review:

This section is primarily based on the papers of Dr. Pawan Lingras and Claudia Ulbricht

listed in the references and includes some of the relevant information derived from them.

This project is loosely based on the publication: Multi-recurrent Networks for Traffic

Forecasting by Claudia Ulbricht at the Austrian Research Institute for Artificial Intelligence. The

methods described in the Ulbricht experiments included: Windowed Network, Hidden Layer

Feedback, Output Feedback, and Input Memory techniques which were a progression from basic

feedforward networks to multi-recurrent networks. In all cases the networks consisted of the

basic input-hidden-output node combination of 36-10-1, respectively.

Ulbricht Experiments

The methods described in the Ulbricht experiments are:

Windowed Network

This is a simple feedforward network

"Windowed" refers to how the time-frame of the selected input advances throughout the

life of the network

i.e., as we advance in time the input window (one week of data in this case) will also

advance, so that the relative temporal distance between the week being predicted and the
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data used as a basis for that prediction remains constant

This corresponds to the input data window "jumping" forward a week at a time, there is

no overlapping of hours from one week to the next

Hidden Layer Feedback

This involves the addition of feedback of the hidden layer outputs to an additional layer

of nodes (called the Context layer) which is then summed with the outputs of the input

layer on the next updating phase (epoch) as the new input to the hidden layer

This was modified later to implement a "memory" layer with self-feedback loops to itself

(as explained below) by duplicating the Context layer three times with different weights

applied to their inputs and self-feedback loops

Output Feedback

Same feedback concept as above applied to the output layer using its own Context layer

Feedback values in this case were composed of the network outputs, the target outputs,

and the differences between the two

This was also modified as stated in the previous method (explained below)

Input Memory

Same feedback concept as above applied to the input layer using its own Context layer

This was also modified as stated in the previous method (explained below)

All of these feedback methods were combined to produce the final ANN of this

experiment which has twelve Context layers performing feedback to emulate both short-

and long-term memory

Memory Layer
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Each of the preceding feedback links were modified to provide a persistent "memory" as

follows:

Each initial Context layer accepted input values weighted 100% and output them with no

further self-feedback

This effectively allows the network to "remember" the previous input which is then

combined with the current inputs to the hidden layer

ALL Context layers output to the same hidden layer of neurons

The Context layer of each network level was duplicated three times with various weights

as follows:

Original	 100% input	 0% self-feedback

Duplicate 1	 75% input 25% self-feedback

Duplicate 2	 50% input 50% self-feedback

Duplicate 3	 25% input 75% self-feedback

This creates "memory cells" of different flexibility such that:

A smaller weight applied to the input to a Context layer generates a memory cell which

is less influenced by recent changes of input

A smaller weight on the self-feedback loop of a Context layer generates a memory cell

which is a more flexible short-term memory

Thus, we have a progression from flexible short-term memory cells (Original Context

layer) to more rigid long-term memory cells (25% input, 75% self-feedback)
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CHAPTER 3

THE FXPE ENTS

3.1 Methods:

- state what I did

- list material and equipment

The ANNs were constructed using the Stuttgart Neural Network Simulator (SNNS)

Version 4.0 software running on a Sun SuperSparc 20, 50 MHz computer with 64 MB of RAM.

Initially eight different non-recurrent ANNs were created in hopes of learning which of these

would provide the best results and expand on these in the next phase of Dr. Lingras' continuing

research. The selected ANN architectures will be refined to create recurrent ANNs, then possibly

time-delay recurrent ANNs.

3.1.1 Initial Non-recurrent AANs:

Two distinct models were chosen as a starting point for the experiments where the

difference was in predicting either the hourly traffic volumes for each of the 168 hours in a week,

or the daily traffic volumes for each of the seven days in a week. This was further enhanced by

using two variances on the time window chosen as input for the week to be predicted. These

two schemes were to use either the traffic volumes from the previous week of same year as input,

or the traffic volumes from the same week of previous year as input.

The general structure of these ANNs were defined as presented in Table 1 below. This

selection of the number of nodes to use in each layer was determined in the following manner.
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Table 3.1 Basic Structum of Initial ANNs Based on Number of Neurons Used

Input Hidden Output

Net 1 186 93 168

Net 2 186 177 168

Net 3 25 13 7

Net 4 25 16 7

3.1.2 Input Nodes:

The number of input nodes was selected as 186 = 168 + 12 + 5 + 1 for the hourly model,

and as 25 = 7 + 12 + 5 + 1 for the daily model. These figures correspond to 168 HTVs of each

hour of week, or seven HTVs of each day of week, plus twelve flags representing the month of

year, plus five flags representing the week of month, plus one flag representing the occurrence

of a holiday on the week in question. An input node value can represent a range of values a or

a flag (-1, 0, or +1 in this case) indicating the presence or absence of a particular condition. A

flag is useful for values which should not be interpreted as scalars.

A flag is useful for values which should not be interpreted as scalars

ie. the use of one node with a range of 1 - 12 indicating the month may train the network

to interpret Dec. (12) as somehow better than Sept. (9) since it is numerically larger

The choice of flags were suggested as meaningful in the context of highway traffic

patterns where it should be reasonable to expect fluctuations in traffic volumes based on details
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such as the day of the week, whether or not this is a holiday week, and the like. Unique nodes

representing flags to indicate the month or week in question are deemed as the best method

because a single node with multiple values will train the ANN such that it will interpret Dec. (12)

as "better than" Sept. (9) since it is numerically larger. In some applications that may be

desirable but, here it is not.

3.1.3 Output Nodes:

The number of output nodes is simply a matter of the number of HTVs to be predicted.

That is, 168 is simply the number of hours in one week, and seven is simply the number of days

in one week to be predicted.

3.1.4 Hidden Nodes:

The number of hidden nodes were based on two rules-of-thumb generally used for this

selection. The two methods were, the number of input nodes divided by two, or the sum of the

input and output nodes divided by two. In both cases the result was rounded up to the nearest

integer value. Thus, the first method generated 93 and thirteen hidden nodes, and the second

method generated 177 and sixteen hidden nodes.

The first method for determining the number of hidden nodes to use is based on a theorem

(?) which shows that this all that is required to model any continuous function. In general, the

design of neural networks may be considered as much an art as a science and it is considered

prudent to "start with small nets and then add more and more state layers later, try[ing] to keep

the network as small as possible." (Ulbricht, e-mail)
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- describe research methods and technical procedures followed

3.2 SNNS Software:

The Stuttgart Neural Network Simulator (SNNS) package proved to be a very complete

and effective package, it is provided free of charge by anonymous ftp from the University of

Stuttgart at the interne address provided in the references (Zell).

3.2.1 Creating the Networks:

Creating the networks was a very simple process, beginning by starting the simulator with

the command "ssns" which then displays the copyright banner that must be clicked on to proceed.

A single click on a button labelled "BIGNET" allows you to choose the type of network desired,

for this experiment the feedforward type was selected. For each layer desired selections were

made, in order from the input, to the hidden, then the output layer, as indicated in the following

table, each followed by clicking on the button labelled "insert".

Table 3.2 Network Configuration Options

layer type: #units in x-dir #units in y-dir: #units in z-dir: relative pos'n:

input input 186 1 1 below

hidden hidden 177 1 1 below

output output 168 1 1 below

Next the option was selected for "full connection", then "create net", then "done". From

this point the file creation was performed by selecting the button labelled "FILE", then the option

for file type "net", and the network name "186-177-168" based on the example in the table above.
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This naming convention was adopted throughout to aid in identifying the networks based on their

physical structure via the number of nodes used in the respective layers. At this point the option

"save" was selected, the sub-menu exited by selecting "done". When all the different network

architectures were created in this fashion the button labelled "QUIT", then the option "yes" were

selected to end the process. All very simple to execute with no real understanding of the

underlying processes involved required of the user.

3.2.2 Creating the Input Patterns:

The Stuttgart Neural Network Simulator software suite requires what is known as pattern

files for input to the actual network. These pattern files are ASCII text files consisting of the

repeated sequence of a line representing the network input followed by the
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CHAPTER 4

RESULTS

The following data results are the errors of the predicted HTVs which are the differences

between the estimated volumes and the target volumes calculated as percentages of the actual

target HTVs. Also included here are statistics generated by the SNNS package which indicate

the hardware resources required to train the networks. The creation of the networks, as described

in the previous chapter, was a relatively trivial matter due to the very high quality of the SNNS

software package.

4.1 Estimation Errors:

The data results presented here have a minor flaw that was detected rather late in the

process. An oversight was made regarding the condition where output values may take either

positive or negative values, thus the maximum and minimum errors presented here do not fully

describe the situation. The data will be calculated again with absolute values for all percentage

errors to provide more significant results. However, the current results do partially confirm the

proposed concepts regarding which ANN structures may best fit the given problem domain and

are presented in the following tables.

Table 4.1 Results of Network: 186-177-168 Current Year

Sun Mon Tue Wed Thu Fri Sat

average 0.0725 0.0095 0.1661 -1.1113 0.0692 0.1152 0.1994

max 1.0000 0.9994 0.9952 0.9983 0.9949 0.9920 0.9996

min -20.0000 -14.5491 -9.5159 -617.2500 -18.8525 -10.0077 -9.5297

median 0.2693 0.2167 0.3878 0.3829 0.2682 0.2549 0.3699



19

Table 4.2 Results of Network: 186-177-168 Previous Year

Sun Mon Tue Wed Thu Fri Sat

average -0.0214 0.0400 0.1407 -0.6041 0.0991 0.1281 0.1878

max 0.9994 0.9994 0.9962 0.9973 0.9901 0.9920 0.9998

min -86.5862 -37.4203 -12.2519 -607.2500 -17.0244 -12.4184 -9.4000

median 0.2895 0.2219 0.4238 0.4073 0.2872 0.2728 0.3942

Table 4.3 Results of Network: 186-93-168 Current Year

Sun Mon Tue Wed Thu Fri Sat

average -0.1892 -0.2533 -0.0851 -1.0518 -0.2905 -0.1115 -0.0978

max 0.9497 0.9586 0.9595 0.9601 0.9605 0.8660 0.9353

min -15.0000 -16.5019 -9.0973 -621.5000 -27.7612 -10.0533 -14.8041

median 0.1336 0.0341 0.1710 0.2428 0.1023 0.0717 0.1883

Table 4.4 Results of Network: 186-93-168 Previous Year

Sun Mon Tue Wed Thu Fri Sat

average -0.4733 -0.0753 -0.1059 -0.9756 -0.2393 -0.0951 -0.0341

max 0.9440 0.9577 0.9757 0.9788 0.9710 0.8615 0.9616

min -355.3571 -16.6207 -9.9520 -624.1250 -28.1343 -12.2444 -17.8814

median 0.0855 0.1125 0.1818 0.2255 0.1642 0.0920 0.2132
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Table 4.5 Results of Network: 25-16-7 Current Year

Sun Mon Tue Wed Thu Fri Sat

average -0.0179 0.0061 -0.0166 -0.2458 0.0040 0.0002 0.0047

max 0.2645 0.2073 0.2313 0.2191 0.2327 0.1743 0.2490

min -6.6058 -0.3513 -5.1331 -65.2051 -0.7969 -0.5832 -0.5414

median 0.0102 0.0124 0.0057 0.0090 0.0061 0.0086 0.0123

Table 4.6 Results of Network: 25-16-7 Previous Year

Sun Mon Tue Wed Thu Fri Sat

average -0.0153 -0.0108 0.0116 -0.2582 -0.0189 0.0002 -0.0120

max 0.1121 0.1564 0.1191 0.4119 0.2210 0.0939 0.1270

min -0.9900 -0.2546 -0.1393 -40.2598 -0.3798 -0.1550 -0.1662

median -0.0148 -0.0128 0.0161 0.0176 -0.0234 0.0069 -0.0168

Table 4.7 Results of Network: 25-13-7 Current Year

Sun Mon Tue Wed Thu Fri Sat

average -0.0243 -0.0016 -0.0098 -0.2490 0.0036 -0.0047 -0.0007

max 0.2665 0.1921 0.2308 0.2121 0.2273 0.1575 0.1984

min -6.4668 -0.3468 -5.0807 -64.7248 -0.7954 -0.6015 -0.6668

median 0.0081 0.0060 0.0048 0.0088 0.0117 0.0007 0.0127
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Table 4.8 Results of Network: 25-13-7 Previous Year

Sun Mon Tue Wed Thu Fri Sat

average -0.0142 -0.0110 -0.0066 -0.2668 0.0023 0.0036 -0.0057

max 0.1185 0.1598 0.1112 0.4047 0.2498 0.0903 0.1263

min -0.9914 -0.2465 -0.1411 -43.3402 -0.3724 -0.1534 -0.1672

median -0.0106 -0.0201 -0.0104 0.0191 0.0147 0.0113 -0.0049

Table 4.9 Results of Seven Individual Daily Volume Networks: 25-13-1 Current Year

Sun Mon Tue Wed Thu Fri Sat

average -0.0228 -0.0036 -0.0116 -0.2581 0.0040 0.0060 0.0044

max 0.2680 0.1916 0.2375 0.2107 0.2229 0.1723 0.2526

min -6.4404 -0.3020 -5.0636 -64.6974 -0.8217 -0.5830 -0.5220

median 0.0091 -0.0051 0.0068 -0.0021 0.0180 0.0173 0.0157

4.2 Processing Requirements:

The following tables illustrate some of the basic characteristics of each network. The

tables are organized according to the commonalities present in each of the main structures used

in this project. The abreviation CUPS refers to the number of connection updates per second.

The main points of interest are the processor times required to train each network which

effectively demonstrate the dramatic increase in overhead with larger networks. Two values of

significance in the number of learned cycles category from table 4.10 are explained below.
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Table 4.10 Performance Statistics: 168 Hourly Output Networks

Network name 186-177-168 186-177-168p 186-93-168 186-93-168p

No. of units 531 531 447 447

No. of links 62658 62658 32922 32922

No. of patterns 252 153 252 153

No. of cycles 25000 25000 25000 25000

Max. error to stop 0.001000 0.001000 0.001000 0.001000

No. of learned cycles 25000 25000 9216 3644

CPU time (sec) 391099.31 259815.09 66688.22 18781.01

CPU time (hr) 108.64 72.17 18.52 5.22

User time (sec) 465408 290185 154739 43179

User time (hr) 129.28 80.61 42.98 11.99

No. of CUPS 1.009323e+06 9.224516e+05 1.146516e+06 9.773206e+05

Table 4.11 Performance Statistics: Seven Daily Output Networks

Network name 25-16-7 25-16-'7p 25-13-7 25-13-7p

No. of units 48 48 45 45

No. of links 512 512 416 416

No. of patterns 252 153 252 153

No. of cycles 25000 25000 25000 25000

Max. error to stop 0.001000 0.001000 0.001000 0.001000

No. of learned cycles 25000 25000 25000 25000

CPU time (sec) 2373.69 1824.96 2378.73 1289.06

CPU time (hr) 0.66 0.51 0.66 0.36

User time (sec) 12256 10219 12235 7007

User time (hr) 3.40 2.84 3.40 1.95

No. of CUPS 1.358897e+06 1.073119e+06 1.101764e+06 1.234388e+06
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Table 4.12 Performance Statistics: One Daily Output Networks

Network name 25-13-1.1 25-13-1.2 25-13-1.3 25-13-1.4

No. of units 39 39 39 39

No. of links 338 338 338 338

No. of patterns 257 257 257 257

No. of cycles 25000 25000 25000 25000

Max. error to stop 0.001000 0.001000 0.001000 0.001000

No. of learned cycles 25000 25000 25000 25000

CPU time (sec) 1746.46 1745.65 1919.96 1743.27

CPU time (hr) 0.49 0.48 0.53 0.48

User time (sec) 12458 12170 12449 11824

User time (hr) 3.46 3.38 3.46 3.28

No. of CUPS 1.243458e+06 1.244035e+06 1.131091e+06 1.245734e+06

Table 4.13 Performance Statistics: One Daily Output Networks (cont.)

Network name 25-13-1.5. 25-13-1.6 25-13-1.7

No. of units 39 39 39

No. of links 338 338 338

No. of patterns 257 257 257

No. of cycles 25000 25000 25000

Max. error to stop 0.001000 0.001000 0.001000

No. of learned cycles 25000 25000 25000

CPU time (sec) 1745.66 1748.80 1756.36

CPU time (hr) 0.48 0.49 0.49

User time (sec) 10974 10960 10978

User time (hr) 3.05 3.04 3.05

No. of CUPS 1.244028e+06 1.241794e+06 1.236449e+06
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4.3 Discussion:

The anticipated outcome was that smaller ANNs would be more effective and that more

accurate results would be obtained from a higher degree of specialization i.e., the smaller

networks tailored to predict individual days of the week in this case. Although the results may

not clearly demonstrate that this is the case, it is felt that recalculating them with absolute values

of the percentage errors will reveal this to be true.

One exceptional characteristic of note in table 4.10 are the number of learned cycles

entries for networks 186-93-168 using data from both the current year and the previous year. this

indicates that the networks were trained to below the acceptable error levels very much earlier

than all the other networks. This would indicate that these two networks are the best candidates

for further study since they seem to have adapted to the problem set more readily than the other

configurations. At the very least they should be the first to be statically tested with fresh data.
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CHAPTER 5

IN'T 'ERPRETATIONS

This discussion assumes that neural networks are at least as effective, if not more so, than

statistical methods, and more tolerant of noisy or incomplete data (Lingras). Thus the main focus

here has been to compare different ANN architectures and identify those more effective at

predicting correct results in the chosen problem domain, namely analyzing HTVs. It must be

noted that for all the network architectures created during the course of this project the data has

not been subject to rigorous statistical analysis at this point. This project was merely intended

to provide a starting point to explore the use of fully recurrent temporal ANNs.

5.1 Conclusions:

Among the conclusions drawn from performing this experiment are the following:

• The most notable finding is the very rapid rate at which the two networks predicting 168

hourly HTVs with the smaller number of hidden neurons (93) achieved the designated

acceptable error level. This general configuation definitely warrants further consideration.

• The large networks providing 168 hourly HTVs per week seem to be marginally more

effective with input data from the current year whereas, the smaller networks predicting

seven daily HTVs are more effective with input data from the previous year.

• In all cases the fewer hidden nodes selected as a starting point is the best choice. More

can be added later if results are not satisfactory.

• With such an unlimited number of possible configurations that may be used some form
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of reasonable convention must be chosen as a guide in further study. Also, smaller

networks may be processed in a shorter period of time, allowing for a broader spectrum

of possibilities to be explored.

• Predictions for all days of the week behaved in a relatively uniform manner with the

exception of Wednesdays which developed larger errors in all networks tested.

• Although it would be prudent to compare the results of the performance of the ANNs

with statistical methods, it may not be absolutely necessary. This facet of the neural

network methodology has been studied extensively and the general consensus is that

ANNs are more effective and more flexible as predictive tools.

There may be a variety of temporal, spatial, or local cultural factors which are unknown

to this researcher at this point in time that may alter the results by their exclusion. It is

known that the data collection site is very close to a large urban centre (less than 20 km

north of Calgary) at a truck weigh station (Balzac scales). A better familiarity with the

shipping routes and schedules for this part of the continent may provide more insight.

5.2 Recommendations:

In concurrence with advise provided by both Dr. Lingras and Ms. Ulbricht, it seems more

appropriate to focus on smaller specialized neural networks. A few recommendations on how

this work may be continued are:

• Testing of the network configuration noted above (186-93-168) should be performed with

fresh data to confirm whether or not they sustain an acceptable degree of accuracy. They

are the best candidates for further study, pending completion of the remaining calculations
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using absolute error values from all ANN results data.

• The spurious results for predictions of HTVs on Wednesdays, where the errors were much

larger than those for any other day of the week, are due to an unknown cause at this

point. It should be determined if there is a local condition or some other phenomena

responsible for this which has been unanticipated as being relevant at present.

• The original inspiration for this project is still a viable extension of this work namely, to

develop a continuous and adaptive prediction tool to model immediate future resource

demand as a temporal model based on the "Input Memory" techniques described in the

Ulbricht paper.

• The choice of creating an individual network for each day of the week seems the best

approach. These may be combined if desired into a larger ANN structure to encompass

an entire week of input. At present it is unclear to this researcher what the effectiveness

of predicting an entire week of input may be, again further study may reveal this need.

• Another combination that may provide more insight is to use individual daily networks

using the hourly HTVs in combinations of input-hidden-output neurons such as: 25-hh-1,

25-hh-24, 186-hh-1, or 186-hh-24. Where: hh indicates any appropriate number of hidden

nodes, and output of 1 indicates a single daily HTV or an output of 24 indicates all the

hourly HTVs for a given day.

• It is recommended that further modifications to encompass recurrent feedback techniques

be based on some form of the individual daily networks. This should follow some study

of the other combinations as outlined above.

• It may be wise to follow through on a comparison the results with same HTV system
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modeled using traditional statistical methods at some future point. It would be more

meaningful to do so with a more complete set of fully recurrent ANNs to provide

confirmation of the prediction ability of artificial neural networks to compete with

traditional statistical methods within the context of the highway traffic volume problem.
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Appendix A

HOLIDAYS.DAT

Holidays.dat is a plain text file generated to identify which weeks of the year contained

a holiday under the week numbering scheme adopted for this project. This scheme defines the

first day of a week to be a Sunday and the last day of the week to be the following Saturday.

Weeks are numbered within the month they occur where the first Sunday of the month defines

the first week of that month. If a week begins in one month and ends in the next it is considered

to belong to the first month. Each line in the file begins with an integer indicating the last two

digits of a year, followed by integer pairs indicating the month of the year and week of the

month, in that order, when a statutory holiday occurs.

A portion of holidays.dat:

Usage of holidays.dat: Throw away first 4 lines, format data as

2 digits for year, repeat 1 integer for month, 1 integer for week

that each holiday falls on. (all separated by one whitespace)

85 3 5 4 1 5 3 6 5 8 1 9 1 10 2 11 2 12 4

86 3 4 3 5 5 3 6 5 8 1 8 5 10 2 11 2 12 3

87 4 2 4 3 53 648 1 91 10 2 11 2 12 3

95 1 1 4 2 4 3 5 3 7 1 8 1 9 1 10 2 11 2 12 4

96 3 5 4 1 5 3 6 5 8 1 9 1 10 2 11 2 12 4



Appendix B

AN EXA E SNNS CONFIGURATION FILE

Type: SNNSBATCH_2

NetworkFile: 186-177-168.net

InitFunction: Randomize_Weights

NoOfinitParam: 2

InitParam: -1.0 1.0

LearnPatternFile: c002181t-186-nn-168.pat

NoOfLearnParam: 2

LearnParam: 0.05 0.05

MaxLearnCycles: 25000

MaxErrorToStop: 0.001

Shuffle: YES

TrainedNetworkFile: trained_186-177-168.net

ResultFile: 186-177-168.res

Resultlncludelnput: NO

ResultlncludeOutput: YES

32


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39

