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This paper discusses an experiment in implementing a Modus Ponens and

Contextual Modus Ponens reducer function for Partial Information Logic model

generation. The reducer is a preprocessor that is to be used with the PIL

implementation of a beth tableau generator as developed by Rajnovich and Nait

Abdallah.
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Introdu Ito ol

Partial information logic, as presented by Nait Abdallah in The Logic of Partial

Information, is an extension of classical logic intended to provide a computable

formalism for dealing with knowledge which is tentative. It makes minor additions

to the syntax of both propositional logic and first-order logic to allow for tentative

reasoning, which in most real world problems is the rule, not the exception. It

makes, however, a major shift in the semantics of the logic. The result is a logic

for tentative reasoning which has the interesting property that it is computable (a

rareity in current research in AI). A proof method is provided based on an

extension of the classical tableau method. This method is, however, intractable.

My research has focused on the issue of tractability when dealing with real world

problems. How efficiently can we generate models for practical problems? Can

we find special cases which are easier to deal with than others? I have started with

an implementation of a theorem prover for propositional partial information logic

as developed by J. J. Rajnovich. The task is to improve the performance of this

software in terms of time and memory use.
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„ci:ound

Partial infoimation logic uses classical logic as its basis.' From here, it adds some

syntax to allow for tentative reasoning.

Classical logicis a total logic in which every atomic formula is either True (T) or

False (F). In partial information logic, we allow for gaps in aour knowledge.

Formulae can be unknown. The symbol ± is used to represent this. This does not,

however, constitute a three-value logic. The 1._ is simply a placeholder to indicate

an unknown value.

Because the logic is partial, we have four truth turnstiles to indicate, instead of the

classical two (see Table 1). In classical (or total) logic, we have the two turnstiles:

1= for true and V for false. In partial information logic, however, we have four.

The first one is the same in both logics. The difference begins at the second

turnstile. It now means 'not true'. This would seem to be the same as false, but

the difference is subtle. Recall that in partial logic, there are times when we do not

know the truth values of a formula. If we have an unknown value in a formula, we

cannot say with absolute certainty that it is false, so, instead, we say that it is

simply not true.

'This discussion assumes the reader has an understanding of classical logic (both
propositional and first-order).

Partial Information Logic 2



True True

False Not True

Turnstile Total (Classical) Logic Partial Logic

Potentially True

Not Potentially True (F)

11=

Ilt

The third and fourth turnstiles are unique to partial logic. 11= means 'potentially

true'. This is used to indicate that it is possible for the formula to be true (ie T or

±). The final turnstile, lit, means 'not potentially true'. This is equivalent to the

classical false.

Table 1. Logical Turnstiles

The next syntactic addition is an increase in the number of negation operators from

one to three (see Table 2). In classic logic, there is only one negation operator (—).

In partial logic, there are three; — is classical negation, — is called pessimistic

negation, and — 1 is optimistic negation. Under all three negation operators, if a is

true, then —a, —a, and — 'a evaluate to false and vice versa if a is false. The

difference arises when you consider the unknown value (when a is ±). Under

classical negation, —a when a is unknown is still unknown. This makes sense.

Under pessimistic negation, —a, we assume that a was false to start with, and

therefore, —a is true. Under optimistic negation (--'a), we make the opposite

assumption (that a was true to start with), so — 'a is false.
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a —a —ia

T F F F

F T T T

I T F

Table 2. Negation operators

There are other syntactic changes, but they are not necessary for this discussion.

Ions

This covers most of the additional syntax, but how is tentativeness shown? This is

done with a binary operator *(. . . . .) called an ion.

The ion is a binary operator of the form *(Justification, SoftConclusion). The ion

is presented in the Logic of Partial Information as a generalization of a classical

atom whose meaning is based on a generalization of classical implication. For

example, the implication a — b is generalized to the ionic formula ion(a, b) 2 . This

means that if the formula a is an acceptable justification, then b is true in a soft

sense. If a is acceptable as a justification, but b is false in a soft sense, then the ion

is false. 3

2 or *(a, b)

3It should be noted that there is more than one variety of ion, but for the purposed of
this discussion, we will deal only with "free" ions.
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Being a formula, an ion can appear anywhere a classical formula can appear. This

is what differentiates ions from other logics currently being used.' It is also

important to note that the justification and soft conclusion parts of an ion can also

be formulae (so nesting of ions is possible). For the purposes of this experiment, it

was decided to restrict the area of study to non-nested ions.

Let's look at a simple example.

A group is going to go hiking. If the forecast is for rain, bring a cost. If the

forecast is for sun, bring sunglasses. What should you bring with you?

1. *( fr, bc) 	 {If forecast rain, bring coat)

2. *(--fr, bg) 	 {If not forecast rain, bring glasses)

One final element of importance to the discussion is the acceptance or rejection of

justifications. In order to signify the acceptance of a justification the +* turnstile is

used. Conversely, when a justification is rejected, the -* turnstile is used. When a

justification is accepted, we have to represent the "soft conclusion". To do this,

we use 1=s to represent true in a soft sense.'

4 Ions can be indefmitely nested. In this work, we restrict attention to non-nested
ions. Such ions can easily be used to capture the intent of Reiter defaults. Defaults,
however, are inference rules, not formulae.

'There are four more turnstiles in all.
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:leis	 _lel 	 hems end __1_3c!el Schema )atterns

To show that a set of formulae is valid, we need to generate a model. A model is

an interpretation of the formulae which makes them true. Interpretation is the

assignment of truth values to each atomic formula (atom). Then, we can answer

the question "Under what conditions is this formula true?".

The implementation that has been developed by Rajnovich uses an extension of the

Beth tableau method for classical logic to generate the models.

Where partial information is concerned, what are generally referred to as models,

are actually model schemes. Each scheme denotes a family (potentially infinite) of

partial models.

The tableau construction procedure creates branches, syntactic objects which each

represent a model scheme pattern. A model scheme pattern has undecomposed

justification expressions in it. Inconsistent branches are closed or pruned. The

remaining branches give the model scheme patterns. Decomposing the justification

expression will give a family of models for each model scheme pattern.

A model scheme is a model scheme pattern in which each justification expression is

replaced by its individual mini-tableau. A model is an instance of a model scheme

in which specific truth valuations are assigned to its variables. [6]
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As a notational convention, a model scheme pattern will be represented as a 4-

tuple of the form <{H}, {I?}, 	 {S}>, where:

H is the set of hard knowledge,

R is the set of rejected justifications,

A is the set of accepted justifications, and

S is the set of soft knowledge.

The logic Tableau

As discussed, a tableau is used to decompose the formula(e). Of special note is

that in the worst case, a tableau will have (29(3") open branches, where i is the

number of ionic operators and d is the number of beta operators'.

A single implication (a b) is decomposed by first converting it to the equivalent

disjunction (—a Vb). Then, the tableau would look like below:

6A beta operator is an operator that acts like a disjunction. Examples of this would
be implications and negated conjunctions.
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Figure 1 Tableau decomposition for a - b.

A single ion is decomposed as below:

Figure 2 Simple ion decomposition.

The left branch is the rejection of the justification, so no new knowledge is

obtained. The second branch represents the acceptance of the justification/ and in

accepting the justification we gain b as "soft" knowledge. This means that

provided the justificationf holds, we will believe that b is true.
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*(fr, bc), 	 bg)

-* fr 	 + fr
is bc

-*-1fr 	 +*-1 fr 	 fr 	 +*--1 fr
bg 	 bg

Let's look back at the 'hiking' problem. It's tableau looks like this:

Figure 3Logic tableau for the hiking problem.

The associated model scheme patterns look like this:

‹{}, { -*fr, -*-fr},
 {}, {}>

2. <{},	 {!=bg}>

3. <{},	 {+*fr}, {1=bc}>

4. <{}, {}, {+*fr,	 {1=bc, 1=bg}>

Pattern 1 refers to the instance where it is rejected that is going to rain and rejected
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that it is sunny, so, as a hiker, do not bring anything. Pattern 2 is the case where

we accept that it is not going to rain, so bring sunglasses. The third refers to the

belief that it will rain, so bring a raincoat, and the fourth is where it is decided that

it could be rainy or sunny, so bring both.

Horn Clause Logic Problems and Piodus Ponens

Reduction

Since the development of efficient Prolog compilers, it has been recognized that a

large number of problems can be represented in a subset of classical logic called

Horn clause logic. Many of the current problems in the literature are in (or are

easily converted into) Horn clause form.

It is from these problems that the idea of a preprocessor that checks for Horn

clause form and performs Modus Ponens (MP) reduction was born. For the

classical total logic problems, Modus Ponens reduction will allow the reduction of

the size of the problem (in terms of the number of implications), and in doing so,

reduces the size of the tableau needed to generate the models.

In partial information logic, there is a similar method of reduction called
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C-Modus PonensModus Ponens

from an implication and the premise

of the

a -+ 	 f3, a 	 implic

ation,

you can infer the conclusion.

*(F,a -> f3),*(A,a)
* (F u A,13)

This can also be representedas:

a -> „8,*(A,a)
*(A,,8)

Contextual-Modus Ponens (called C-MP from now on). The specification of MP

and C-MP are listed in Table 3.

Table 3. Modus Ponens and C-Modus Ponens Specification

To illustrate the savings, let us consider a simple network fault location problem.

•	
a  b 	 c

Network administrators are trying to figure out if a link is available from host a

to host c. There is a link from a to b, and a link from b to c. You can send from a

to b if there is a link from a to b and that link is up. Similarly, you can send from

b to c if there is a link from b to c and the link is up. You can therefore send from

a to c if there is a link from a to b and you can send from b to c. The link is up
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from a to b, and from b to c.

This can be represented in the following manner:

1. link (a, b)

2. link (b, c)

3. send (x, y) - link (x, y), uplink (x, y)

4. send (x, z) - link (x, y), uplink (x, y), send (y, z)

uplink (a, b)

6. uplink (b, c)

We can then project this example to propositional form.

lab

2. lbc

3. sab :- lab, ulab

4. sbc :- lbc, ulbc

5. sac :- lab, ulab, sbc

6. ulab

7. ulbc

It is now possible to perform MP on this set of formulae since this is now

presented in Horn clause form.

(1 + 3 + 6)
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8. sab

(2 + 4 + 7)

9. sbc

(1 + 4 + 5)

10.	 sac

By performing Modus Ponens on this set of formulae, we are able to reduce the

number of implications (actually, to eliminate implications altogether). This gives

as final results, the following formulae which would go to the tableau generator:

1. lab

2. lbc

uab

ubc

sab

9. sbc

10. sac

Clearly, this is a final solution and there is no need to generate a tableau. If we had

generated the tableau for this problem, it would look like this:

* * * * * Tableau here

So, where do ions come into play? Ions permit us to assert tentative knowledge

about the network. In this case, links are typically up. This is not hard knowledge.

Partial Information Logic 13



The case of a link being up is a tentative thing. There is a chance, though, that the

link is down between two network nodes. The problem, as now modified, is

represented as below:

1. link (a, b)

2. link(b, c)

3. send (x, y) - link (x, y), uplink (x, y)

4. send (x, z) - link (x, y), uplink(x, y), send (y, z)

5.	 *(uplink(x, y), uplink(x, y)) - link (x, y) 	 [the link is typically up,
provided it exists]

Observe that ions are required only in clause five.

This can now be projected into propositional (and Horn clause) form: 7

1. lab

2. lbc

3. sab :- lab, ulab

4. sbc lbc, ulbc

5.	 sac :- lab, ulab, sbc

*(ulab, ulab) :- lab

7. *(ulbc, ulbc) lbc

If a tableau were to be generated for the above set of formulae, there would be

' ": -" as it appears in these clauses in place of the — symbol. This is a Prolog
convention. Since the program (PIL) uses these prolog conventions for its input files,they
are used in the examples in this text.
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(potentially) 6565 branches (before pruning of contradictory branches). The

question is, what is the worst case once C-Modus Ponens is performed? Let's

look at this example closely.

8. sab r uab (1, 3)

9. sbc ubc (2, 4)

10. sac — sbc (1, 5)

11. *(uab, uab) (1, 6)

12. *(uab, sab) (11, 8)

13. *(ubc, ubc) (2, 7)

14. *(ubc, sbc) (13, 9)

15. *(ubc, sac) (14, 10)

This gives us the following formulae to send to the tableau generator:

1. lab

2. lbc

11. *(uab, uab)

12. *(uab, sab)

13. *(ubc, ubc)

14. *(ubc, sbc)

15.	 *(ubc, sac)

In this case, we would not eliminate the tableau generation altogether, but we

would greatly reduce the size of the tableau required. In this reduced form, there
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would only a maximum of 2 5 *3 ° = 32 8 . This is clearly a significant difference and

would result in significant time and space savings at runtime.

Clearly, by identifying Horn clause form and performing 1\413 or C-MP before

generating the tableau can save time and heap space.

'Note that it is actually fewer than this. There are several branches that are
terminated due to contradiction.
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Ensign

Since tableau based theorem provers are NP-Complete (solvable in exponential

time), the issue is how to increase the size of the problem solvable on a given

computer.

One of the first things investigated in reducing the runtime use of memory

resources, was to change the size of some of the variables used. There was one

type of variable that was reduced with promising results (see results section). One

of the main issues was to consider if reducing the size of the variable (32-bit

integer to 16 or even 8 bits) would limit the program in terms of size of problem

solvable. Upon further study, it was noted that there were no further significant

savings to be found.

By focusing on a specific subset of problems (knowledge bases in Horn clause

form), it was decided that a preprocessor that implemented Modus Ponens and C-

Modus Ponens would assist in reducing the size of the generated tableau. We will

restrict attention to quite simple logical formulae which are still of great

computational interest. We will also restrict attention to non-nested ions in the

head of the clauses.

The first step was to develop an executable prototype in Prolog. This maintains

consistency and permits integration with the initial tableau generator created by

Partial Information Logic 17



Rajnovich and Nait Abdallah, PIL, which was written in Prolog. One of the

benefits of prototyping in Prolog is to have an executable specification which can

be debugged before beginning the final coding. This prototype can then be easily

converted to the language of choice.

The next step is to take the specification and write the code in C++. This permits

integration with the existing PIL++, the C++ version of the partial information

logic tableau generator.

When the two implementations are ready (with the preprocessor and without) a

number of problems will be run through both with time and heap space

requirement recorded and compared. It is expected that if the problem is in Horn

clause form, there will be a significant savings. The problems used are in Appendix

D.

The program will be run on several machines to test for variations related to

hardware.

The Algorithm

The first step is the process of reduction is to determine if a set of formulae is in
Horn Claus form. This is done as follows:

Function Horn
{

horn = true;
while (not (end of list) or (horn = false)) do

Partial Information Logic 18



if (not ((implication and (conjunction
(antecedent) or atomic(antecedent)) and
atomic (consequent)) or (atomic (Formula)))
then

horn = false;
next formula

}

This formula will return true if all of the formulae in the input list are in Horn Claus

form, else it will return false and quit.

The algorithm for Modus Ponens is as follows:

Procedure ModusPonensReducer
{

if (Horn(FormulaList) then
{

while (not (end of formula list)) do
{

if Atomic(Formula) then
add to atomic list

else
add to non-atomic list;

next formula
}

change = true
if (Atomic list is non-empty) then
{

while ((notEmpty(Non-Atomic)) and
(change = true)) do
{

Break the Antecedent into
components
Search the atomic list for the
components
if FoundAllComponents then
{

add consequent to Atomic list
remove formula from non-Atomic
list
change = true

}
Next non-Atomic Formula
if end(Non-Atomic list) then
{

change = false

Partial Information Logic 19



return to head of non-Atomic
list

}

}

}

}
FormulaList = append(atomic, non-atomic)
return FormulaList

}

This algorithm calls the Horn function. If the set of formulae is in Horn Claus

form, then it breaks the formulae into two lists: Atomic and Non-Atomic formulae.

Then, provided the atomic list is not empty, it steps through the Non-Atomic list,

breaks each formula into antecedents and consequents and checks the list of

Atomic formulae for the atoms in the antecedent. If all elements of the antecedent

are in the list of atomic formulae, then the consequent is added to the list of

atomics and the formula is removed from the non-atomic list.' This will repeat until

either the non-atomic list is emptied, or a fix-point is found (ie there is no further

reduction possible).

For C-Modus Ponens, there would only be a few changes. First, the test for atomic

elements would have to recognize ions as atomic. Second, the procedure for

searching for components must check the conclusions of the ion for the match.

And finally, if the match was with an ion, the add consequent procedure must add

the soft consequent to the atomic list. With these simple changes, one procedure

'It should be noted here that partial modus ponens could be performed, but it was
decided for these purposes that we would require all of the elements of the antecedent to be
present in the atomic list.
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will be able to perform both classical and contextual Modus Ponens!

One question remains: is this solution actually going to improve the results? (ie,

does this algorithm actually take less time and use less space than the savings from

the reduction produces?) A simple analysis of the algorithm answers this.

Consider the case where there are i formulae. Then, the following possibilities

exist:

non-atomic list k = i k = i-1 k = i-2 .	 .	 . k = 0

atomic list j=0 j=1 j=2 .	 .	 . j= k

This will give (in the worst case) E x _10-1) •
x=i 	 2

This algorithm is quadratic in terms of the number of formulae. The tableau

generator is exponential in terms of the beta operators (all operators that behave

like disjunction). There is a clear savings in terms of time and space between

exponential and quadratic.
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s & Discussion

Modifying Variable Size

The differences were significant. It was discovered that a savings of 20% in heap

space usage was achieved. See Table 6 for details on the results.

Example

Problem

Number of

Statements

Heap Usage (in

bytes) Before

Change

Heap Usage

(in bytes)

After

Change

Savings in

Heap Usage

(in bytes)

Memory

Savings

broken.fuu.i 3 1656 1350 306 18%

clev.frm 2 224 185 39 17%

diamond.frm 5 1672 1356 316 19%

draculal. 	 in 12 26632 21541 5091 19%

hiking.frm 2 672 551 121 18%

minker fi in 6 23504 19085 4419 19%

netabc. 	 m 11 38284 30946 7338 19%

tweety.frm 2 408 334 74 18%
Table 6. Results from the change of one type from 32-bit to 8-bit integer.

Preprocessing Results

The results from the preprocessor are equally impressive. For the network problem

previously discussed, the unreduced set of formulae required 12,985 bytes of heap

space. With the preprocessed set, this was reduced to 1,537 bytes. Clearly, this is
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an order of magnitude difference. Appendix C contains the results from other

problems run.
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Xp 	 A

The Prolog prototype goes here
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AppencE:

The C++ Preprocessor goes here
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Appc;,... C

Results from Preprocessor goes here
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Appendix n

Sample problems here.
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