
A Computer Troubleshooting Expert System

To Aid Technical Support Representatives

by

Ian C. Cameron

Department of Mathematics and Computer Science

Submitted in partial fulfilment

of the requirements for the degree of

Bachelor of Science (Specialised)

Algoma University College

Sault Ste. Marie, Ontario

April 2005

© Ian C. Cameron 2005

SP
COSC
CAM
04/05

Abstract

In this modern age computers dot the landscape peifouning a plethora of functions, and

with all of these machines comes the monumental task that is maintenance. Circuit

boards short out software becomes corrupted and viruses invade, and dealing with all

these problems is the lowly technical support representative. To do this job the computer

industry needs more expert representatives than can possibly be found let alone trained.

This means that if a system can be created that would make the expertise of an

experienced professional could be put at the fingertips of a new technician right out of

training both perfoimance and customer satisfaction could be improved immensely.

In this thesis the goal is to address one key question. Would a computer troubleshooting

expert system represent the logical next step in troubleshooting aids? To answer this we

will explore several topics. The first will be expert systems, the problems that they are

best at solving, and how they are usually built. The second will be the Jess rule language

which was chosen to build a prototype application. The third topic will be the analysis of

the problem faced by the industry, and how it will be met. Finally we will describe the

design and implementation of a prototype computer troubleshooting expert system.

Keywords: production rule, production system, expert system, problem domain,

knowledge base, inference engine, user interface, expert system shell, experiential

knowledge, working memory, rule base, recognise-act cycle, fact, rule, slot, forward

chaining, backward chaining, conflict set, fired, Rete algorithm, pattern node, join node,

terminal node, activation record, tokens, node sharing, rule engine, interpreted language,

rule-based programming, procedural programming, late binding, Shadow fact.

ii

Table of Contents

Abstract 	 ii

Table of Contents 	 iii

Chapter 1 	 Introduction 	 1

1.1 	 The Ideal Troubleshooting Aid 	 1

1.2 	 Summary 	 3

Chapter 2 Expert Systems and Production Systems 	 4

2.1 	 Expert Systems 	 4

2.2 	 Production Systems 	 7

2.3 	 The Rete Algorithm 	 10

2.4 	 Summary 	 13

Chapter 3 The Jess Rule Language 	 15

3.1 	 Jess Overview 	 15

3.2 	 Jess and Java 	 18

3.3 	 The Recognise-Act Cycle in Jess 	 20

3.4 Summary 	 22

Chapter 4 The Computer Troubleshooting Expert System 	 24

4.1 	 The Problem 	 24

4.2 	 The Current Solutions 	 27

4.3 	 Proposed Solution 	 28

4.4 Summary 	 31

iii

Chapter 5 Design and Implementation 	 33

5.1 	 Design 	 33

5.2 	 Knowledge Base Implementation 	 36

5.3 	 GUI Implementation 	 39

5.4 Summary 	 41

Chapter 6 Conclusion and Future Work 	 43

6.1 	 Conclusion 	 43

6.2 	 Future Development 	 47

6.3 Summary 	 50

Bibliography 	 52

Appendices 	 54

A 	 Questions.java: GUI Class 	 54

B CTList.java: The Jess Controller 	 61

C 	 CTKnowledgeBase.clp: The Rule Base Batch File 	 67

D Nodes.clp: The Knowledge Base Batch File 	 69

E CTNodeList.java: An Object to Pass the Active List 	 73

F 	 CTNode.java: An Object for Storing Node Data 	 75

iv

Chapter 1: Introductf

1.1 The Ideal Troubleshooting Aid

This thesis began with the realization that the computer troubleshooting industry

had a fundamental problem. The industry has a great need for expert technicians,

but few are available. The current software used to assist technicians assumes

that they are already skilled at narrowing down the possible causes of a computer

problem, and so they are only useful when a cause to the issue at hand is evident.

Into this niche we insert the possibility of an expert system to provide the

guidance needed by the technicians. Hence the question posed by this thesis is

the following: Would a computer troubleshooting expert system represent the next

logical step in technical support aids?

To answer this question it is first necessary to first explain what an expert system

is and what they can do. Expert systems emulate the thought process of human

experts. Expert systems do not handle problems well if the knowledge needed to

perform the task is too great, or the knowledge is difficult or impossible to gather

and encode for the system. Expert systems are usually created using a production

system, which allow the knowledge to be encoded in production rules. One

example of a production system is the Jess rule language, which was used to

develop a prototype application for this thesis.

Jess was chosen for this application because it is current, free for academic use,

has a text available that is well written by the language's creator, and most

2

importantly interacted well with a familiar language (namely Java). Jess'

interaction with Java allows the programmer to embed Jess code in Java

programs, and gives Jess the advantage of access to all Java's APIs. When using

Jess with Java the programmer must be careful because a bug in one system can

cause strange errors in the other. Jess is very efficient and provides many useful

features for improving the efficiency of its operation based on the system that is

being built.

The computer troubleshooting expert system presents the technician with a list of

guiding questions that, when answered, provide the system with information

about what problem sets the issue may belong to, and which ones it does not

belong to. It then generates another list of questions that apply to subsets of those

identified. When all possible sub-sets have been narrowed down to individual

possible causes the system returns a list of possible solutions. This process can be

saved midway through by saving the current list of questions and possible

solutions.

1.2 Summary

In sum, this thesis will explore expert systems and their functions, the Jess rule

language, the problems faced by the computer troubleshooting industry, and the

computer troubleshooting expert system. Each of these topics will be covered in

their own chapter that explains the information pertinent to this thesis. Finally we

3

will bring together this information and seek to answer the question posed in the

start of this chapter, and explain the future work needed to complete the

troubleshooting expert system.

4

Chapter 2: Expert Systems and Production Systems

In this chapter we will discuss the fundamentals of expert systems design and

functionality. This information has been broken down into three main sections

that grow more specific and detailed as they go. The first section contains

information about the definition of an expert system, the components that make

up a typical expert system, and the information needed to determine if a problem

is suitable for the development of such a system. The second section talks about

the components of a production system and their functions because the expert

system created for this thesis was developed using a production system. The third

section provides an in depth discussion of the Rete algorithm, which is utilised by

most modern production systems.

2.1 Expert Systems

An Expert system is "a model and associated procedure that exhibits, within a

specific domain, a degree of expertise in problem solving that is comparable to

that of a human expert."[6]. To do so an expert system must have in depth

knowledge of the problem domain for which it was built. This knowledge is

usually collected from interviews with human experts, although it may also come

from other research materials such as books or the internet. While this knowledge

gives the expert system many advantages over a conventional system it also limits

the system. Expert systems are only able to solve problems in a relatively small,

5

predefined, problem domain. If the problem domain is too large they become

extremely inefficient, and are almost impossible to create. An expert system must

also be capable of explaining its behavior[1]. In the very least it should be able to

list the steps it took to reach its conclusions, and many more elaborate expert

systems are designed so that they can provide the reasoning behind those steps. It

is often also required that the expert system be capable of dealing with uncertainty

[1]. In many instances the expert system is designed to reason in the face of

conflicting or incomplete evidence, and it is expected to make conclusions and

rate them on their accuracy.

Every expert system has three main components, the knowledge base, inference

engine, and user interface[7]. The knowledge base stores the information known

about the given problem domain. It is usually made up of rules that define the

domain specific knowledge human experts use to make decisions. The inference

engine applies what is known about the current situation or problem to the

knowledge that is stored in the knowledge base to draw conclusions. In the

process conclusions may lead to new infoiiiiation about the current situation,

which in turn may lead the inference engine to draw more conclusions which

creates a chain of inference. The user interface provides interactivity with the

user (which may itself be another software system). A user interface may be as

simple as a text prompt or as complex as a remote GUI running across a network.

In most expert systems the user interface and inference engine are bundled

together so that the knowledge base can easily be modified or replaced to change

6

the domain in which the system has expertise. This combined inference engine

and user interface is referred to as an expert system shell (as seen in Diagram

2.2.1) [5]. Most expert systems can only be modified to encompass knowledge of

a similar problem domain to that of the original. Despite this some general

purpose expert system shells do exist, and are commercially available as

programming languages and debugging environments for building expert systems.

Shell

Figure 2.2.1: The Layout of a Typical Expert System

Expert systems have been used successfully to perfoi n many commercial

applications. In 1973 MYCIN was created to aid in medical diagnosis and was

then used to create EMYCIN (or Empty MYCIN), which was the first general

purpose expert system shell. In 1976 PROSPECTOR was created to perfoun

geological analysis, and proved to be extremely successful. The OPS expert

system shell was created in 1977, and used by DEC in 1978 to create XCON/R1

for configuring computer systems. These and other systems have made expert

systems one of the more profitable technologies to come out of AI research.[5]

There are several questions that must be addressed when contemplating creating

an expert system as a solution to a given problem acording to Giarratand and

Riley[5]. First, "can the problem be efficiently solved using conventional

programming'?" If a conventional program can be created that solves the given

7

problem efficiently then it is unlikely that an expert system could be created that

is of comparable performance Second, "is the domain well bounded?" For an

expert system to be created it is necessary to know exactly what it will need to

know. Third, "is there a need and a desire for an expert system?" If the problem

has already been sufficiently solved then the expert system will never be used.

Fourth, "is there at least one human expert who is willing to cooperate?" An

expert system will only be as good as the expertise that is given to it; if the expert

from whom the knowledge is being derived is unwilling then the information

retrieved won't be very good. Fifth, "can the expert(s) explain the knowledge so

that it can be understood by the knowledge engineer?" If the person collecting

and encoding the knowledge can't understand it, then the system will not properly

reflect the knowledge of the human expert(s). Finally, "is the problem-solving

knowledge mainly heuristic and uncertain?" If the expert's problem-solving

approach is mainly based on experience (experiential knowledge) or an organised

trial and error process, then an expert system is probably the right approach.

An expert system can be written in any programming language, but the vast

majority are created using production systems. For this reason production

systems will be discussed in the next section.

2.3 Production Systems

Most current expert systems are built using production systems (e.g. Jess, CLIPS,

Ops, etc.). Production systems are made up of three main components, the

8

working memory, rule base, and recognise-act cycle[8]. The best analogy for how

an expert system that is written using a production system works is that the

working memory is like the human short-term memory. Working memory

contains all information about the current situation. The rule base represents

long-teun memory. It stores all the infolination that is known from past

experience. The recognise-act cycle represents the thinking process that draws

conclusions based on analysis of the current situation, and how it relates to what

is known from past experience.

Working memory is usually made up of an ordered list of facts. A fact is a single

cohesive set or chunk of data [5]. Interrelated pieces of information are stored in

a single fact so that the recognise-act cycle can easily match them with the

required conditions for a rule. For example if the system needed to know about a

given door the user may describe it as being made of wood, with steel hinges, and

it has no window, and the system would store all of these attributes in a single

fact. Each fact may have one or more slots. A slot is a place where a single piece

of information is stored. For example the door fact above would probably have

four slots including one to state that it is a door we are referring to. If the system

only dealt with doors this would be unnecessary.

The rule base of a production system is made up of production rules (hence the

name "production systems"). Production rules are of the form "If Condition, then

Action". Production systems can be made so that they are natively either forward

chaining or backward chaining. Forward chaining rules are of the form "If

9

DesiredDataPresent, then DrawConclusion", and so the system performs a search

of the knowledge base for possible conclusions that can be made based on the

data present in working memory[8]. Forward chaining inherently does a breadth

first search following all chains of inference simultaneously[5]. This means that

forward chaining is most efficient when there are many short chains of inference

(the graph is broad and shallow). Backward chaining rules present themselves as

"If Goal, then ProveSubGoals", and therefore the system performs a search of the

knowledge base for data that can prove the goals in working memory. Backward

chaining naturally performs a depth first search following all chains of inference

one at a time[5]. This means that backward chaining is best used when dealing

with a few long chains of inference (the graph is deep and narrow).

The recognise-act cycle performs pattern matching operations between the facts in

working memory and the rules in the rule base. When the conditions for a given

rule are met they are added to the conflict set. When all matching rules are in the

conflict set the system must perform some kind of conflict resolution strategy.

This could be as simple as executing all rules in the order in which they where

entered into the system, or as complex as using a heuristic to determine the best

rule to execute first. Once a rule has been chosen from the conflict set its action is

executed, and the rule is said to have fired. When a rule fires it may alter the state

of working memory, and so after firing a rule the recognise-act cycle restarts with

pattern matching. This process repeats itself until it either runs out of rules in the

conflict set, or it runs into a halt command

1 0

Production systems can perform the role of a general-purpose expert systems

shell, and in fact can be utilised in the creation of any software application. This

is because production systems are equivalent in power to a Turing machine[8].

Despite this, these systems are seldom used for general programming because

most applications would be less efficient and harder to implement using a

production system than if they were implemented in a language such as C++ or

java. To clarify how a production system really works (particularly the one used

for this thesis), it is now necessary that we go into detail describing the Rete

algorithm, which is the most commonly used implementation of the recognise-act

cycle.

2.2 The Rete Algorithm

In the recognise-act cycle it is obvious that the efficiency of the system will

depend greatly on the algorithm used to match facts to rules. If the system had to

check every fact, or combination of facts, to every rule on each iteration of the

cycle, then the system would be horribly inefficient. Luckily most of the time

when a rule fires it usually changes only a small portion of the contents of

working memory. This means that if the system can remember the matches that

occurred on the previous iteration then the system only has to perform pattern

matching with the facts that have changed when the last rule fired. The most

important algorithm that has been found for doing this is the Rete algorithm

11

created in 1982 by Charles L. Forgy [2]. Variations on this algorithm have been

used in several rule engines, including OPS5, ART, CLIPS, and Jess.

Rete (pronounced "ree-tee") is Latin for net, and so it will come as no surprise

that it works by building a network of interconnected nodes[4]. Each node

represents one or more conditions of a rule and has one or two inputs and any

number of outputs. Input nodes are placed at the top of the network and output

nodes at the bottom. The input nodes separate facts according to their head

(identifies the kind of fact, doors would go in door facts while windows would go

in window facts), and in the network progressively finer discriminations and

associations between facts are made until finally the facts reach the bottom where

nodes representing the rules reside. When a fact or set of facts are taken as input

for a node in the network, the node will output those facts if they pass the test

within it. If a set of facts filters all the way down the network to the bottom then

it has passed all the conditions for one of the rules, and so this rule will be added

to the conflict set.

The internal nodes between the inputs and the outputs can be divided into two

categories. They are either pattern nodes or join nodes. Pattern nodes always

occur above join nodes, and filter the inputs so that only relevant facts are

presented to the join nodes. Pattern nodes have a single input and perform a test

on a single fact. Join nodes have two inputs, and these nodes perform tests that

involve more than one fact. Join nodes remember any facts that come in on either

of their inputs. The "left" input can receive one or more facts as input, and the

12

"right" input can only receive a single fact. Join nodes always produce two or

more facts as output.

The rules that have been defined in the system are represented in the network by

terminal nodes. TeHninal nodes have one input and no output. Upon receiveing

input they package the incoming list of facts with the rule that they represent to

create an activation record. The activation record is then added to the conflict set.

To run the Rete network the system simply has to pass every new fact to the

inputs at the top of the network. First the pattern nodes will run every test that

can be done with only one fact, effectively filtering out all facts that do not apply

to the join nodes. The join nodes then determine what interrelations between facts

match those that are required to match the conditions for the rules in the system.

These then feed into the terminal nodes, which create activation records that are

added to the conflict set.

So we now have a system that performs pattern matching operations only on facts

that are added, but can it handle the retraction of facts. This is done by sending

tokens instead of facts through the network. A token contains the fact which is to

be added or removed from the network, and it also contains a command as to what

to do with the fact. When a node in the network receives a token it checks if the

fact meets its test, and if it does it will perform the prescribed action. If it is

adding the fact then it will add the fact to its memory, and if it is retracting then it

will remove it from its memory. It will then create a new token to pass as output.

13

If an incoming token negates one that it has previously output, it will create a new

token that performs the change in the rest of the network. If a terminal node

receives a retracting token it searches for the associated activation record and

removes it from the conflict set.

Over the years each system implementing the Rete algorithm has made successive

improvements on the implementation of the network. The simplest of these

optimizations is node sharing. Using a purist's implementation of the Rete

network would mean that there would be one input node for every fact that is

required for every rule, even if two rules required the same fact the network

would still have two input nodes for that same fact. By sharing nodes that are

identical for more than one rule, the algorithm becomes more efficient both in the

amount of computations needed to perform pattern matching, and in the amount

of memory used to store previously encountered facts.

2.3 Summary

Expert systems are extremely useful in emulating human experts when few are

available or assisting human experts under extreme conditions when the

performance of human experts becomes unpredictable. These systems are limited

by their inability to handle problems outside of the relatively small problem

domains for which they can be programmed. This means that they are only

suitable for handling a very specific set of problems. Luckily these problems can

be identified by answering the six questions previously listed. In short these

14

questions identify whether another type of system could solve the problem, and if

the knowledge needed to create an expert system can be collected and represented

in the system.

Expert systems are usually created using production systems. These systems are

made up of a working memory, a rule base, and a recognise act cycle. The

working memory is made up of an ordered list of facts. Each fact contains a

cohesive set of data about the current situation faced by the system. The rule base

is made up of a list of production rules, which encode knowledge about how the

system should react to a given situation represented in working memory. The

recognise-act cycle recognises what rules apply to the current situation, and

decides which of those rules' actions to perfoini next,.

The most commonly used method for performing the recognise act cycle of a

production system is the Rete algorithm. This algorithm improves efficiency by

remembering the pattern matching done on previous iteration of the recognise act

cycle so that it only has to react to the immediate changes to working memory.

To do this it creates a network of nodes, each of which performs a test on the facts

given to it and saves those that match its required patterns. Results that are

outputted from the bottom of the network activate specific rules; adding them to

the conflict set.

15

Chapter 3: Ti! Jess aLle Language

In the last chapter we discussed the components of a typical production system and how

they work. In this chapter we will be talking about a specific production system, Jess. The

expert system developed for this thesis was written in the Jess language, and so it is

important to describe the features, benefits, and inner workings of the Jess rule engine to

gain a better understanding of how the troubleshooting expert system really works.

This chapter has three main sections. The first section is a general outline of the Jess

language, the features it provides to the programmer, and the reasons behind choosing it for

this expert system. The second section provides deeper insight into the most important

feature of Jess, it's interactivity with Java. The third section describes the implementation

of the recognise act cycle used by Jess, and how its behaviour can be monitored, adjusted

and refined.

3.1 Jess Overview

For the application developed for this thesis it was decided that the most appropriate

language was the Jess, or Java Expert Systems Shell, language [3]. Developed in the late

1990's at Sandia National Laboratories [4], Jess is a general purpose programming

language written specifically with expert systems in mind. Jess was originally inspired by

CLIPS, and the two do have great similarities in the rule languages they support. This has

made it easy in the past for CLIPS applications to be ported over to Jess (some speculate

that this feature was vital in the initial success of the Jess rule language). Despite these

similarities, the two languages are fundamentally different. Jess is a dynamic, Java centric

16

language, where CLIPS is not. This makes Jess ideal for web-based applets, where CLIPS

would be difficult to use at best.

Jess also has some functions that CLIPS does not, and some Jess functions have the same

syntax as those in CLIPS but different semantics. One function that Jess has that CLIPS

does not is the ability to treat working memory like a relational database by defining

possible queries that can be called by the program at any time. The query returns a

java.util.Iterator of all the tokens containing facts that match the query. This allows the

programmer to easily step through the returned data.

Jess is an interpreted language that involves both rule-based programming and procedural

commands When using rule-based commands the inference engine supports both forward

and backward chaining In Jess backward chaining is implemented through forward

chaining in the background, so the system is really only using forward chaining When

using procedural calls the language is syntactically very similar to LISP. All function calls

are encapsulated in parentheses and are in prefix notation, and all commands are function

calls.

Functions in Jess use late bindings to support the languages dynamic nature[4]. This means

that a function call can be made in a function or rule definition before the function itself is

defined. When the function is then defined it is properly linked to the call. This is most

important when a function definition is changed during execution because in Jess the new

definition will affect all calls to the function. Even those functions already called in

previous function and rule definitions are redirected to the new function definition.

17

Many rule-based systems can have hundreds of rules, and so preventing adverse

interactions between rules can be a monumental task. To make building such a system

easier, the designers of Jess made it possible to partition the rule base into modules. When

a run command is called on the system only the rules in the focus module can fire. During

execution a rule may call for a change in focus and so change which rules can fire.

Modules also define a name space, which means that two rules can have the same name

without there being a problem as long as they belong to different modules. This use of

modules makes Jess ideal for large rule based systems.

There were several reasons that Jess was chosen for this thesis. The first was that Jess was

free for academic use. This was an important consideration as economics are always a

concern where a university student is concerned. The second consideration was the

availability of a text that gave a comprehensive treatment of the language. Jess in Action

by Earnest Friedman-Hill was instrumental in learning the language and the essentials for

creating an expert system. The third reason for selecting Jess was its strong interaction with

Java. Having a strong background in Java made Jess an ideal approach to learning rule

based programming The final reason for choosing Jess was that it is one of the more recent

rule engines to be developed. This meant that when it was developed many of the lessons

learned from the experience that arose from older rule engines were incorporated into the

implementation of the language.

18

3.2 Jess and Java

Jess has a very strong relationship with Java. In fact Jess is written and executed in Java.

This relationship proves useful in that Java code can be executed in Jess, therefore Java

objects can be instantiated in Jess. Not only can Jess call Java; the reverse is also true. Jess

code can be directly called from Java. This means that Jess can be embedded directly in

Java and new Jess commands can be easily written in Java. The close relationship between

Jess and Java also means that Jess can access all Java APIs. This ability makes access to

networking, graphics, database management, and a range of other useful tools very easy.

The close relationship with Java is probably the most important feature of the Jess

language; without it Jess would be of little interest.

Jess also has an interesting way of allowing interaction between the working memory and

JavaBeans. Shadow facts are facts that derive their slot values from those contained in

JavaBeans. There are two distinct types of shadow facts to reflect when they obtain their

contents. Static shadow facts set the slot values whenever the fact is placed in working

memory, and they do not change their value even if the values in the associated JavaBeen

change. Dynamic shadow facts change slot values whenever those in the associated

JavaBean change, so their value may change at any time. As the values in a dynamic

shadow fact change, they may cause rules to be activate or retract rule activations. This

allows for Jess to respond to data that is in a state of flux.

There is one disadvantage to combining Jess and Java in a program. This is that errors in

embedded Jess code can cause very strange errors to present themselves in Java. When

debugging the system it can be difficult to locate the error as the symptom may present

19

itself in one subsystem while it is caused in the other. One example of this is when a

missing bracket in a Jess file caused it to fail to load without causing an error, and when the

needed information was accessed by Java it threw a null pointer exception. In this case the

erroneous data (actually lack of data) had to pass through the rule engine, and two Java

objects before presenting the error in a third object. The fact that Jess is interpreted means

that a syntax error will only present itself on runtime, and when embedded in Java it will

only present itself as an exception that has little to do with the actual nature of the problem.

In this example a null pointer exception won't make you immediately think of a possible

syntax error.

Some interesting problems can also be encountered because of the fact that Java variables

are strictly typed while Jess variables are untyped. This causes problems when Jess calls an

overloaded java method. For instance if a Java method has two different implementations,

one for a string parameter and one for a boolean parameter, and Jess calls that method with

the value FALSE then it will be impossible to predict which implementation Jess will

execute because Jess can translate FALSE into either a string or boolean value. To deal

with this it may be necessary to place the value in an explicit rapper class. So if it was the

intended that the boolean value be passed it would be necessary to create and pass a

j ava.lang.B oolean object.

Another difference between Jess and Java is that Jess has no array data structure. Instead

the basic data structure in Jess is the list. This is no problem in most cases because arrays

can be converted to lists and vice versa, but Jess has no way of representing

multidimensional arrays. If a multidimensional array is passed to Jess it will dutifully

20

convert it to a one dimensional list of the arrays contents. Currently the only way to deal

with this problem is to handle the multidimensional array in Java and only access individual

data elements from Jess. This solution is very easy as it is simply a matter of creating an

abstract data type that acts like the multidimensional array and creating an instance in Jess.

3.3 The Recognise-Act Cycle in Jess

Jess uses a modified Rete algorithm for efficient pattern matching. It implements node

sharing to increase efficiency, and uses different kinds of nodes in the network to

implement conditional elements such as not and test as well as special behaviours for

backward chaining Jess also has built in functions for providing information about the

Rete network and individual nodes within it. The watch compilations command provides

feedback from the Rete network. With this command Jess returns information about nodes

added to and shared in the network each time a new rule is added to the system. The view

command can be used to display a graphical representation of the Rete network. The

matches command takes the name of a rule and gives information about all the given rules

join nodes.

The implementation of the Rete algorithm that is used makes Jess extremely efficient. On

some systems Jess can outperform CLIPS by a factor of 20 or more on many problems. On

an 800MHz Pentium III Jess has been clocked at over 80,000 rules fired per second and

almost 600,000 pattern matching operations performed per second using Sun's HotSpot

JVM [4]. There are few rule engines faster.

21

There are several ways that a programmer can alter the way that Jess handles conflict

resolution. It has two built in conflict resolution strategies depth (the default) and breadth

that can be explicitly selected using the set-strategy command. Depth always executes the

most recently activated rule first, and so inherently does a breadth first search. Breadth

executes the rules in the order that they are activated, so the oldest activation always fires

first. The programmer can also define their own conflict resolution strategy by creating a

Java class that implements the jess.Strategy interface. In doing so the programmer can use

heuristic methods of determining the order of execution, or any other method they want.

Loading this new strategy is as easy as calling set-strategy on the class file.

The conflict resolution strategy can also be manipulated by setting the salience value of a

given rule. The salience gives the priority of each given rule, and defaults to zero. This

method is used to give either higher or lower priority to rules that define special cases. If

the system requires that a given rule fire immediately, such as responding to an emergency,

then the rule should be given a high salience value. If a rule should always be left as a last

resort, such as trying all non invasive options before trying surgery on a patient, then the

rule should be given a low salience value. This process of setting salience values should

always be used only for special cases because if over used it will be detrimental to

performance. It is also considered bad style to use a large number of salience values

because it negates the non-determinism of the system by making the rule based program

perform more like a conventional procedural program.

22

3.4 Summary

The Jess language provides the programmer with a full-featured production system that is

well suited to producing modern expert systems and other rule based programs By making

Jess free for academic use the developers have put this powerful rule engine within reach of

students everywhere for development of projects such as this one. The addition of a readily

available textbook written by the creator of the language also encourages development

using Jess, but what clinches the deal is the easy interaction with java. All these combined

make Jess a very attractive production system.

Jess was designed from the very beginning to encourage integration with Java. Jess can call

any Java method, and Java can call any Jess function. This unlocks the use of Java's

powerful APIs for use by Jess. It also makes it possible to embed Jess in Java programs.

Jess can even allow facts in working memory to respond to changes in values held by

JavaBeans. The only hitch is that the added complexity of multiple interacting systems can

sometimes create some interesting side effects and debugging headaches. This is a small

price to pay for all that functionality.

Jess has several features surrounding the recognise act cycle that help the programmer

obtain the desired performance. It uses an optimised Rete algorithm to provide efficient

pattern matching, and provides functions to allow the programmer to observe the changes to

the network as they occur so that they can modify the rules to improve perfolinance The

rule engine provides two built in conflict resolution strategies, breadth and depth, and

allows the developer to create their own. Jess also provides the ability to modify salience

23

values to compensate for special cases that do not fit into the regular conflict resolution

scheme. These and other features have made Jess an interesting language to study.

24

Chapter 4: The Cc_ Lter Troubleshooting Expert System

In the last two chapters we have covered background information on expert

systems, production systems, and the Jess rule language. It has come time that we

delve into the heart of this thesis. In the coming chapter we will flesh out the

inspiration behind this thesis, the problem that it is trying to solve, and how that

problem will be solved.

The chapter is divided into three key sections. The first introduces the problems

faced by the technical support industry. The second will provide infounation

about the software that is currently in place. The third will describe how the

current inadequacies will be met by the introduction of a computer

troubleshooting expert system.

4.1 The Problem

Computer troubleshooting is an integral part of the modern computer industry.

To honor warrantees and satisfy their customers needs, hardware and software

manufacturers need to be able to determine the root causes of computer problems

so that the proper assistance can be given from the company that produced the

part or program that is causing the malfunction. With the incredible number of

computer systems involved, providing these services with house calls and local

service centers is virtually impossible, if not simply unreasonably expensive.

This has meant an increasing need for technical support to be done over the phone

from call centers across the globe. Large numbers of people are employed at

25

relatively low pay rates providing this support, and so the problem of finding

skilled service representatives proves difficult. Customers who call in are

generally frustrated and even sometimes hostile, and this makes providing support

demanding and stressful. This causes employee turnover rates to be very high.

When troubleshooting computer systems there are many possible issues that could

be encountered, but almost all of them have at some point been encountered

before. In fact after only a few months of work a support representative will have

encountered most of the problems that they receive during a given work day. In

fact after six months on the phones a technician is considered to have encountered

every issue that currently exists at least once. The majority of the calls that are

received deal with issues that they are likely to encounter at least once a week. If

a technician can learn to recognize these common issues then their

troubleshooting becomes extremely efficient, but this requires a fair degree of

skill and a natural ability to recognize the symptoms of these common problems.

Very few of those who work in the technical support industry will have the ability

to attain this level of expertise, and with the high turnover rate of employees even

fewer will actually reach that level. Those who do become expert technicians

rarely stay very long, and are quickly seen as good workers and promoted to

positions that involve little in the way of time on the phones. These issues

compound to create a situation where a given call center will have a precious few

expert troubleshooters on the phones at any one time.

26

The question is how to make this expertise available to all technicians while on

the phone. If we could, then the stress of starting would be reduced because the

increase in ability to deal with customer issues would inspire confidence. Any

reduction of job stress is almost guaranteed to reduce turnover. It would also

increase the rate at which those who have the ability to become experts attain that

status, and it would increase the performance of those that would not have

otherwise had access to that expert advice. These increases in efficiency would

simultaneously increase both employee and customer satisfaction.

The greatest costs in the technical support industry are human resources, training,

and the overhead of running each call center. The availability of a computer

troubleshooting expert system may decrease these costs in several ways. By

decreasing turnover and making the job easier to perform, the training costs could

be decreased. The increased efficiency of technicians would also reduce the

number of them that would be needed, and therefore decrease the number of

centers needed. This diminishing need for employees and centers would decrease

both overhead and human resources costs. By making the job easier such a

system would also decrease the skills required to do the job, and thus make it

easier to find willing employees. Reducing the skills needed by the work force

would reduce the starting wage required to attract employees. This would make

such a system very commercially viable.

27

4.2 The Current Solutions

Technical support companies currently use a combination of several systems to

aid their support representatives in solving the issues that they encounter. First

they have data about known issues with respect to specific pieces of hardware or

software. This is stored on websites that are linked from information about the

system owned by the caller. This is a good way of providing information to

technicians about problems inherent in a given system (known glitches or design

flaws). Second they have small troubleshooting checklists that work as a web site

that allows the technician to find solutions to certain general problems, but that

require them to know at least approximately what the problem is and gives only a

list of possible solutions to use in a trial and error process. Thirdly they use a

searchable database of solutions to specific problems. This database is really only

useful if you know the specific problem (i.e. a specific error message) otherwise

the representative is likely to face a huge list of results to their search with no

advice as to which ones to try first. If a specific problem is known then the

database system is extremely efficient.

The known issues system and database are very useful and efficient in certain

situations (in my experience I never did find a use for the checklists as their

solutions were too inefficient). In general use none of these systems work well

because they require a technician who has knowledge of how the system works so

that they can ask relevant questions that narrow down the problem to a few

specific solutions. This clearly means that what is needed is a system that asks

28

guiding questions and narrows the field of possible problems until the number of

possible solutions is reasonable enough that the technician can efficiently solve

the problem. A technician working with this new system would be able to follow

a dependable process to solve most problems encountered on the job. They would

first check for known issues for the given system, then they would use the new

system to narrow down the problem to a specific list of solutions, which could

then be retrieved from the database system.

4.3 Proposed Solution

To complement the current systems in place and provide the expertise that is

needed to guide the average technical support representative through an efficient

and effective troubleshooting process the logical next step is to develop an expert

system that represents the problem solving expertise of human experts in the field.

This system would be required to ask questions that would guide the technician

through testing the system and narrowing down the possible sources of the

problem. It should then provide a list of solutions to the possible causes.

The system should allow the user to save the current state of troubleshooting for

later retrieval by another technician. This is so that the troubleshooting process

does not have to be repeated if a call is accidentally disconnected. The saved state

should be accessible to the user by way of a reference. A reset switch should also

be provided that restarts the troubleshooting process. The system should also be

easy to expand to accommodate changes in technology as they become available

29

to the customers. Ease of use and efficiency will be important if the system is to

be widely accepted.

This application exhibits nondeterministic characteristics in that if a problem

could have more than one possible cause the system must explore all possibilities

concurrently. This would be done by asking questions that relate to all possible

causes. This kind of behavior would be difficult to perform with conventional

programming, but is ideal for an expert system. The problem domain is well

bounded, in that the system only has to have knowledge of the most common

problems. A human expert is unlikely to know solutions to all computer

problems, so it is acceptable for the system to be able to increase efficiency for

those issues that make up the majority of the calls. As can be seen above there is

a great need for a system of this type to provide assistance where none currently

exists. There are human experts from whom the knowledge can be retrieved,

namely several colleges and myself who are willing to participate. This

knowledge is also particularly easy to translate to a rule based structure. The

problem-solving knowledge is mainly a combination of experiential knowledge

and an organized trial and error process. This means that this particular

application meets all of the requirements for being an ideal problem to be solved

by an expert system as listed in section 2.1 of this thesis.

The main subsystem of the computer troubleshooting expert system as concerns

this thesis is the inference engine / knowledge base. It is implemented as a basic

search program for a directed acyclic graph (DAG) using the Jess rule language.

30

Each internal node represents a sub-domain of the problem set for which the

system has knowledge. The leaf nodes represent specific solutions to known

computer problems. As the DAG is traversed downward the problem set is

broken down into successively narrower problem domains until all the possible

solutions are known. The infounation about each node is stored in a fact that is

always asserted into working memory when the system is reset. The inferences

are handled by a single rule that handles all interactions with the GUI front end

and manages the traversal of the graph.

Problems on Startup

Solution for
Virus Problem

Solution for Hard
Drive Issue

Solution for
System Corruption

Figure 4.3.1: An example DAG structured knowledge base.

As you can see in Figure 4.3.1 two domains may share a sub-domain. This is

because two very different symptoms may have the same root cause. In this case

there are two possible problems that can cause a problem on start-up, an error

message and a lockup. Also we see that either a virus or a hard drive issue may

cause an error message, and each of these have one possible solution. This is

similar to lockups, which can be caused by either a hard drive issue, or system

corruption (which also has one solution).

31

Each node on the given DAG has knowledge of what its parent nodes are, but

generally a parent node does not know what its children are. The child activates,

is put on the list of those to be tested, when its parent domain is confirmed to be a

domain in which a possible solution to the current problem may reside. Because

of this, it is possible to add sub domains, or solutions, to a given problem domain

without modifying the existing nodes. This organisation does have one drawback:

for an existing sub domain to be activated by a new one's confiiination, the old

node would have to be modified. For this purpose a second method of activation

was included in which the parent holds a list of children to be activated upon

confirmation. This allows any new knowledge to be added without any

modification of the pre-existing nodes.

2.4 Summary

The technical support industry requires a large number of support representatives

who can troubleshoot computer problems effectively and efficiently, but expert

technicians are few and far between. This causes a fundamental problem in which

new technicians flounder. Having not yet obtained the level of expertise needed

to properly perform the job, they face the stress of feeling incompetent. Many

support representatives will never become an expert because they will either quit,

or do not possess the skills needed to reach that goal.

Currently, several software aids are in place to assist technical support

representatives. These tools can be very useful when solving certain types of

32

problems. Specifically, they solve problems to which the root cause is obvious,

and issues that involve known hardware and software design and construction

flaws. The problem lies in that there is no aid provided that helps to narrow down

the cause of an unknown issue.

This is where a computer troubleshooting expert system would provide the ideal

solution. The system would work by asking the user guiding questions to narrow

down the possible causes of the problem and provide a list of possible solutions.

It should allow a save of the current state of troubleshooting, so that later it could

be reloaded. It would also be made easy to expand; adding new problems to the

domain specific knowledge. This system would compliment the existing software

to provide comprehensive support to technicians on the phones.

33

Chapter 5: Design and Implementation

In the last chapter we explained the problem for which the computer

troubleshooting expert system was produced, why an expert system is the right

approach, the functionality required of the system, and a high level view of how

they will be achieved. In this chapter we will delve deeper into the internal

workings of the computer troubleshooting expert system. To do so it is divided

into three sections. The first one explains the interactions between the various

elements that make up the system. The second section gives direct code examples

to illustrate how the knowledge base/ inference engine guide the system through

the troubleshooting process. The third describes how the GUI provides

interactivity for the user.

5.1 Design

The Computer Troubleshooter prototype was implemented using Jess embedded

in Java. This means that the Jess rule engine is instantiated as an object in a Java

program. A Jess controller object was created so that the rule-based system

would present an easier interface with the Java system. It presents itself as a

simple abstract data type with basic methods for retrieval of the list of questions

for the user.

During nounal operation the GUI prompts the user with a list of yes or no

questions. The responses are stored in an array, which is then passed to the Jess

controller. The Jess controller then compares the array of Boolean values with the

Answers

Questions

Array of Answers

Question Array

Jess
Control
Object

User GUI

Jess
orking

Me ory
Activate Nodes

Inference
Engine

34

confirmation values (answers that confiii 	u the validity of each problem domain)

that where given with the questions from the rule engine. For those questions

whose answers match the confirmation values, the Jess controller places domain

confirmations in working memory. The Jess controller then issues a run

command to the rule engine, which fires the rules that where activated by the

domain confirmations. As the inference engine fires the rules it adds the domain

question and confirmation values to a list, which is then retrieved by the Jess

controller. The Jess controller then compiles a new array of questions, which are

then returned to the GUI. The GUI then presents this new list of questions to the

user. The process then repeats itself until the user resets the system is reset by the

user, or the system runs out of questions to ask. This process can be seen in

Figure 5.2.1.

Confirm Domains

Figure 5.2.1: The information flow in the computer troubleshooter.

The system must also deal with several situations other than the normal narrowing

of the problem domains. It also has to handle possible solutions when they are

found. When the inference engine encounters solution nodes it adds them to the

35

list just like the problem domain nodes. When encountered by the Jess controller

it puts them in a reserved section of the question array. They are then recognized

by the GUI and presented to the user as solutions. The system must also be

capable of saving and reloading the current state of execution. By saving the

current list of questions and confirming values held by the Jess controller the

system can save the current state of the troubleshooting process. Resetting the

rule engine to its starting state and restoring these values will resume the

troubleshooting where it left off. The system must also be capable of resetting the

troubleshooting process at any time. Resetting the troubleshooting system is

simply a matter of calling a reset command on the rule engine from the Jess

controller.

The system is stored in seven separate files on the host system; five of which are

important. These are the GUI class file, the Jess controller class file, rule base

batch file, the knowledge base batch file, and the Jess jar file. The GUI class file

functions as the driver program that initializes the entire system and provides the

user interface. The Jess controller class file loads the rule engine from the Jess jar

file and executes the rule base batch file to initialize the rule engine with all rules

and all initial facts. The rule base batch file provides the rules that are loaded into

the rule engine upon initialization and calls the knowledge base batch file. The

knowledge base batch file loads the nodes of the DAG that define the chains of

inference. Alterations to the problems that can be handled by the system are

possible through modification of the knowledge base batch file.

36

The last two files used by the system are the class files that define an abstract data

type used by the system. When passing the list of questions and solutions from

the rule engine to the Jess controller the transition is handled by giving both

entities references to the same instance of this abstract data type. This object

stores the name, type, text, link, confirming value, and list of triggers held by each

node that is currently active. Using this infoiniation the Jess controller can pass

the questions to the GUI and confirm the nodes that are given proper answers.

5.2 Knowledge Base Implementation

The nodes are stored in facts which are asserted when the system is loaded, and

automatically loaded into working memory whenever the system is reset. These

nodes are asserted using a single deffacts command. Each of these nodes stores

the name of the node, the type (problem domain or solution), the text message for

the user, the confirmation value, possibly a web link, a list of the domains to

which this node belongs (which if confirmed will cause the node to activate), and

a list of triggers (nodes to activate if the node is confirmed). If the node is a

problem domain node the text message for the user will be a yes or no question

whose answer will confirm or deny that the problem may belong in the nodes

domain. If it is a solution node then the text will contain a title describing the

solution. The web link will link to information such as tests that may be

perfolined to answer the question given, or an in-depth description of a given

solution.

37

For example the node in Example 5.3.1 defines the domain of all problems that

cause the system to be unable to enter windows. As you can see it is a problem

domain node so it is of type question, and it has a question in the text slot that will

confirm or deny that the problem belongs to the given problem. If the answer

given by the user is returned by the GUI as a false it means that the system can't

get into windows, and therefore the system will confirm this domain. The link is

blank, so this node does not have a web site that explains proper testing to find an

answer to the posed question. This node belongs to the initial domain, meaning

when the system is reset it will activate this node. For a node that represented a

sub domain of this one the domain slot would contain cant_enter_Win, and so the

node would be activated when the Jess controller asserted the fact (domain

cant_enter_Win). This node does not have any triggers. If it did have triggers

then upon confirmation of the node the Jess controller would assert the fact

(trigger name_of triggered_domain), and the triggered domain would be

activated.

(node (name cant_enter_Win)
(type question)
(text "Can the system get in to Windows?")
(answer FALSE)
(link "")
(domain init))

Figure 5.3.1: An example node fact.

Among other things, the rule base batch file defines a single rule that handles all

inferences in this system. This rule can be seen in Example 5.3.2. This rule is a

good example of the prefix notation that is inherent in the Jess language. When

38

using the defrule function in Jess the first argument is the name of the rule, the

second argument is a string describing the rule, the third argument is a list of

conditions that must be met for the rule, the fourth is ".>", and the fifth is a list of

actions to perfoHn if the rule fires. This rule will fire under two possible

conditions separated by the "or" conditional element. The first possibility is that

the rule will fire if a domain fact in working memory matches a domain that is a

member of the list of domains defined in one of the node facts. The second

possible activation will occur if a trigger fact in working memory matches the

name of a node fact. When the rule fires it calls the add method of the active list,

which is the Java object to which the Jess controller has access.

(defrule ask_question
"takes submitted questions and executes method for adding to list"
(or	 (and (domain 9 i)

(node (domain $'d&:(member$?i $?d))
(name ?name)
(type ?type)
(text ?text)
(answer ?answer)
(link ?link)
(trigger $?trigger)))

(and (trigger $?n)
(node (name 'name&:(member$?name $?n))

(type ?type)
(text ?text)
(answer ?answer)
(link ?link)
(trigger $?trigger))))

=>
(call ?*active_list* add ?name ?type ?text ?answer ?link ?trigger))

Figure 5.3.2: The rule for adding nodes to the active list.

39

5.3 GUI Implementation

The GUI class starts by initializing a menu bar containing the reset and logout

commands It then instantiates a Jess controller object, which in turn initializes

the knowledge base and retrieves the first list of questions for the user. Once this

is done it initializes a question window by creating an instance of itself with a

second constructor that takes the Jess controller as an argument. This new

instance retrieves the list of questions and creates a window to display them to the

user. Upon submission of the answers it passes them to the Jess controller,

destroys the current question window, and creates a new instance of the GUI class

that will in turn display the new list of questions. When the list of questions runs

out the new instance of the GUI class will display the list of solutions that has

been generated.

What follows is a set of screen shots that shows the computer troubleshooter in

use. In Figure 5.3.1 the reset and logout options can be seen along with the initial

set of questions. Upon selecting no and submitting we come to Figure 5.3.2. In

this shot the user has stated that an error message occurred. Submitting brings us

to Figure 5.3.3. Here they have stated that the error occurs after the windows

splash screen and so leading to Figure 5.3.4. Here the system has run out of

questions, and so is listing all solutions encountered during execution. To restart

the process the user simply has to exit the current question window and go to the

restart in the "File" menu on the task bar.

V -Guat 	 vi)4

fl le Reports Knowleatie Tools Help

Reset

Logout

Yes No

1. Can you get in to Windows? Li

0

1. Is there a power issue?

2. Is the system locking up?

3. Is there an error message?

4. Does the computer shut down on its own?

5. When you turn it on does it beep once?

. , 6. Is the screen image blank or unrecognisable? riz

Figure 5.3.2: System is encountering an error message.

Figure 5.3.1: The initial questions and menu bar

40

Solutions
1. Replace HDD.

2. FDisk Format Reload.

File Reports Knowledge Tools Help

Yes No

III 2.
Are there errors before the Windows splash screen? 0 42

1. Are there errors after the Windows splash screen? g

Figure 5.3.3: The error occurs after the windows splash screen.

Figure 5.3.4: The system presents a list of possible solutions.

5.4 Summary

The computer troubleshooting expert system created for this thesis presents the

user with a list of questions. Upon answering them the system processes the input

and decides in which possible problem domains the issue may lie. Once the

possible problem domains are identified the system presents another list of

questions, each of which pertains to one of the possible problem domains

41

42

selected. This process is repeated until the possible problems are small enough

that the system can produce a list of solutions.

All the questions and all of the information needed for the system to go through

its thought process are contained in a list of facts. Each of these facts represents a

node in a directed acyclic graph. This graph is searched by the system using a

single rule. When the Jess controller identifies a possible problem domain this

rule searches the facts for sub-domains that relate to the domain submitted. When

these facts are identified their questions and other needed infoimation is passed to

the Jess controller to be presented to the user.

43

Chapter 6: Conclusions and Future Work

Over the course of this thesis we have covered a variety of topics. First, we

discussed expert systems, production systems, and the Rete algorithm. Second,

we explored the Jess language, its interaction with Java, and its implementation of

the Rete Algorithm. Third, we provided insight into the problems faced by the

computer troubleshooting industry, the current software aids used, and the

solution proposed by this thesis. Finally we explained how a prototype

implementation was designed and implemented. We will now seek to summaries

the concepts that have been discussed and how future work can be done to

produce the final application.

This chapter has two key sections. The first is a summary of the information

provided in the preceding chapters. The second will describe the planned future

development of the computer troubleshooting expert system.

6.1 Conclusions

At the beginning the goal of this thesis was to find a better way to provide

assistance to technicians in the computer technical support industry. This came

from the discovery that the current aids to troubleshooting were woefully

inadequate. A niche existed into which a new system could be placed to perfoun

the functions not currently provided. An interest in the techniques that have been

developed by artificial intelligence research led me to the possibility that a

computer troubleshooting expert systems may just hold the answer. This raised

44

an interesting question which then became the premise of this thesis. Would a

computer troubleshooting expert system represent the next logical step in

technical support aids?

Expert systems are systems that emulate the thought process of human experts.

They are made up of a knowledge base to store the thought process, an inference

engine that applies that thought process to the current situation, and a user

interface that provides interaction with the user. Expert systems are only

appropriate for solving specific types of problems. Many problems are

inappropriate because the knowledge needed is too vast, it is not attainable, or the

problem can more efficiently solved by other means. Expert systems are

commonly created using production systems, which are made up of a rule-base,

working memory, and recognize-act cycle. The rule base is made up of a series of

production rules that represent knowledge about the thought process. The

working memory is made up of an ordered list of facts known about the current

situation. The recognize-act cycle draws conclusions by matching rules to facts.

This is usually implemented using the Rete algorithm, which creates a network

that identifies facts that match the requirements for rules and remembers past

matching operations. This creates a production system which is efficient at

storing and applying the knowledge that is necessary for the creation of an expert

system.

Jess is the production system used for creating the prototype application for this

thesis. In comparison to the other production systems available Jess was found to

45

be more current, cheaper, provided a well written text (written by the languages

creator), and most importantly interacted better with a familiar language (namely

java). Jess' interaction with Java allows programs written in each language to call

functions written in the other language. This allows the embedding of Jess code

in Java programs, and allows Jess to utilize Java APIs. This interactivity is very

useful but must be used wisely to avoid creating bugs that are difficult to locate

and repair. All this functionality is great, but it would all be for naught without a

good recognise act cycle. For this Jess implements a modified Rete algorithm and

provides tools for optimizing its performance and that of the conflict resolution

strategy. All told Jess has proved to be a useful system in the creation of the

computer troubleshooting expert system.

The computer troubleshooting industry has a chronic problem with too few expert

technicians available to answer the phones. As a result they have to make do with

less qualified staff, which causes customer and employee satisfaction to be poor at

best. To aid technicians they provide systems that help with specific issues, but

do not provide guidance as to how to use an organized process to narrow down

the problem and identify the underlying issue. One possible solution would be to

put an expert system in place to fill this niche. This system would provide the

user with a list of questions that would successively narrow down the problem

until solutions can be found. The system would also allow the user to save the

state of troubleshooting to prevent multiple technicians from having to do the

same work twice. Together with the other systems already in place this system

46

will allow a new technician to confidently handle most of the calls they handle

without needing help.

The computer troubleshooting expert system provides guiding questions to the

user, and upon receiving answers uses them to narrow down the possible problem

sets to which the issue faced may belong. It then provides questions that apply to

those problem domains identified. This occurs until a list of possible solutions

can be produced that accounts for all possible causes. The state of this process

can be saved at any time by saving the list of current questions and solutions, and

the process can be reset by simply calling a reset on the rule based system. All of

the information needed for the system to go through the aforementioned processes

is contained in a list of facts each of which represents a node in a directed acyclic

graph. To search this graph, a single rule is used that identifies the nodes that

should activate when a given domain is identified by the Jess controller. In doing

so it adds the nodes information to a list that in turn provides the questions to the

user.

All told the information in this thesis has produced a clear answer to the original

question. A computer troubleshooting expert system is the ideal next step in

technical support aids. This is apparent for the several reasons. Firstly, it would

compliment the current systems by providing much needed guidance as to how to

approach troubleshooting a system when the problem isn't explicitly known. In

other words an expert system would provide all of the functionalities needed by

the computer troubleshooting community. Secondly, it fits the description of an

47

ideal problem to be solved by an expert system. In fact it is exactly this type of

problem that expert systems where developed to solve. Thirdly, a final

commercial version of this system would be relatively easy to produce based on

the lessons learned from development of the current prototype. This future

development will be discussed in the coming section.

6.2 Future Development

The prototype created for this thesis was developed to provide insight as to the

effort and skills needed to create the final system. As such the implementation

provided a very limited functionality. The problem domain handled was

restricted to covering only a small subset of computer problems. This was done

to simplify the collection of the needed information, and any commercial

application would need to accommodate a greatly expanded problem domain.

The system was also limited by the amount of research that had been completed at

the time of implementation. Much research has been done since the development

of this prototype, and the information gained has provided insight into how the

model could be improved.

The model used to develop the prototype allows the DAG to extend to great depth

with no lower limit. It also allows for solutions to occur at any level of the tree,

and it is expected that for any one problem their will only be one solution. This

was originally done to prevent the production of a large list of solutions that

would be inefficient to try in linear order, a problem that was encountered with

48

troubleshooting checklist systems. The problem with this method is that the

system uses forward chaining, which is distinctly more efficient in a broad

shallow graph. By limiting the depth of the graph the system could become more

efficient.

The depth of the graph could be limited by requiring that a problems

identification process be limited to dividing problems into general domains, sub-

domains, problem types, problems, and solutions where each is successively

lower on the tree. This would limit the depth of the tree, and it would also

guarantee that all solutions would be encountered at the same time, thus negating

the need to take pains to distinguish between questioning nodes and solution

nodes. It would also be recognized that not all problems will be specific, and so

may have multiple solution nodes. As long as there aren't too many solutions per

problem the previously mentioned problem could be avoided. A solution node

could also have a layer of sub nodes that provide questions that give the user

insight as to the likelihood that a specific solution is going to solve the problem,

and so direct the user as to which solutions to try first. This would make the

system run more efficiently and predictably.

Another alteration that would be advantages is to implement the nodes as rules

instead of as facts. This would mostly affect the system performance when the

system is reset because the Rete network would have to process all the node

patterns on every reset as opposed to just loading them right in the network when

it is initialized and never having to reload them. It is also a matter of convention.

49

Normally static knowledge is always represented as rules, and only information

about the current problem is stored in working memory as facts. This is a long

held convention.

It would also be necessary to implement an explanation facility. The explanation

facility was never implemented in the prototype as this was a relatively minor

feature that contributed little to the knowledge of computer troubleshooting expert

system construction. An explanation facility would be implemented by

submitting all information about activated nodes to a Java object that would store

information about the chains of inference that have been followed, and the nodes

would have to be modified to store more information about the reasoning that

may have led to that node becoming active. When submitted to the explanation

object the new information in the nodes would be related to the chains of

inference to create explanations for how the system reached its current state. It

should also discard data about chains of inference that are negated to save

memory space. When solutions are reached the explanation object should only

hold information about the chains of inference that led to solutions. This would

be the most difficult change to the system that would need to take place to make it

ready for commercial use, but it would mostly involve implementing of Java

classes.

Finally, as stated before, any commercial system would have to handle a much

wider problem set. To do this it would be necessary to collect information about

what the most common problems are. After eliminating known system issues and

50

problems which explicitly present the cause (i.e. error messages) a list could be

created that covers all issues that should be handled by the expert system. This

list would then be presented to troubleshooting experts to deteunine the steps that

they take to identify which issue is present on a given call. This identification

process would then have to be encoded into the rules needed to allow the system

to recognize this expanded problem domain.

Much of this process would require the participation of the computer

troubleshooting company by which the system would be used. The system would

have to be tailored to a single company because a company that makes modems is

likely to receive a different set of common problems than a company that sells

entire computer systems. Some common problems will inevitably be similar, so

the system would not have to be completely reengineered to produce a new

system for a different company.

6.3 Summary

Over the course of this thesis we have explored all the technologies and

techniques used in the development of a computer troubleshooting expert system.

We first explained expert systems and what problems they can solve. Then we

moved into the Jess rule language, and the features that benefit this application.

This led into discussion of the problem we wish to solve, and how it can be

solved. The implementation of the prototype was then discussed, and now we

have described the future work necessary to complete the project.

51

Development of a final application would require certain changes to be made to

the current prototype. Firstly the system would need to handle an expanded

problem domain. This would require a study to be done of the most common

problems faced by technicians. Secondly, a reworking of the current application

code would be required to improve efficiency. These changes would mostly be

small and easy to implement. Finally the system would need an explanation

facility to provide the reasoning behind the systems choice of solutions. This

would help the users to understand what is known about the problem.

52

Bibliography

[1] Bratko, Ivan. "Prolog programming for Artificial Intelligence: Third Edition",

Addison Wesley, Harlow Eng., 2001 chapters 15-16.

[2] Forgy, Charles L. "Rete: A fast Algorithm for the Many Pattern / Many Object Pattern

Match Problem,", Artificial Intelligence 19, 1982 pages 17-37.

[4] Friedman-Hill, Ernest. "Jess, The Java Expert System Shell Version 5.2", Sandia

National Laboratories, Livermore CA, May 2001,

http://herzberg.ca.sandia.gov/jess/docs/52/

[3] Friedman-Hill, Ernest. "Jess In Action Rule-Based Systems in Java", Manning,

Greenwich CT, 2003

[5] Giarratand, Joseph and Gary Riley. "Expert Systems Principles and Programming:

Third Edition", PWS Publishing Company, Boston MA, 1998

[6] Ignizio, James P. "Introduction to Expert Systems: The Development and

Implementation of Rule-Based Expert Systems", McGraw-Hill, Inc., New York NY,

1991

[7] Khera, Dheeraj (Raj). "The Impact of Expert Systems", Khera Communications, Inc.,

1998, http://www.morebusiness.com/running_your_business/businessbits/v2n8.brc

[8] Luger, George F. "Artificial Intelligence Structures and Strategies for Complex

Problem Solving Fifth Edition", Addison Westly, Essex England, 2005

[9] Morris, Jason. "Jess Inventor Opines About Rule Engines and Java", Jupitermedia

Corporation, October 2003, http://www.devx.comaava/Article/17651

[10] Walker, Terri C. and Richard K. Miller, "Expert Systems Handbook : An Assessment

of Technology and Applications", Prentice-Hall, Englewood Cliffs NJ, 1990

[11] Whitehouse, Peter, "INFORMATION PROCESSING & TECHNOLOGY EDITION

10.010204", wOnKo THES @NE, Brisbane Australia, 1992-2005,

http://www.wonlco.info/cybertext/ai/ai3.htm

[12]Wu, Chaur G. "Modeling Rule-Based Systems with EMF", Chaur G. Wu, 2004,

http://www.eclipse.org/articles/Article-

Rule%20Modeling%20With%20EMF/article.html

53

Appendix A: Questions Java: GUI Class

Purpose:
Provides the GUI class for a computer troubleshooting expert system.

Dependencies
This class utilises the SpringUtilities class available at:
http://java.sun.comidocs/books/tutorial/uiswing/layout/example-
ldot4/SpringUtilities.java

Constructors:
One constructor is provided that initialises the menu bar and another initialises a
new list of questions or solutions.

Public Methods:
main() - initialises the system
actionPerfofined(ActionEvent) - implements GUI interaction

54

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.border.*;

public class Questions extends JFrame implements ActionListener
{

private int num; //index of the last question/answer(indexed from one)
private static CTList list; //the jess controler object
private int[] answers=new int[25]; //the list of answers for the current

//questions
private JCheckBox[] [] b; //the check boxes for the current questions on

//display
private JFrame myWindow; //the current question/answer window

//main method: used to initialise the system
public static void main(String. [] args)
{

Questions window = new Questions();
window. setDefaultClo seOperation(JFrame.EXIT_ON_CLO S E) ;
window. .setVisible(true);

}

//constructor for desplaying the menu bar
public Questions()
{

list= new CTList();
Questions window = new Questions(list);

setSize(400, 60);
setTitle("Visual Troubleshooter v0.4");
Container contentPane = getContentPane();
contentPane.setBackground(Color.lightGray);
contentPane.setLayout(new BorderLayout());

JMenu fileMenu = new JMenu("File");
JMenultem a;

a = new JMenultem("Reset");
a.addActionListener(this);
fileMenu.add(a);
a = new JMenultem("Logout");
a.addActionListener(this);
fileMenu.add(a);

55

JMenu reportsMenu = new JMenu("Reports");
a = new JMenultem("Reports go Here");
a. addActionListener(this);
reportsMenu.add(a);

JMenu knowledgeMenu = new JMenu("Knowledge");
a = new JMenultem("Search Knowledge");
a.addActionListener(this);
knowledgeMenu.add(a);

JMenu toolMenu = new JMenu("Tools");
a = new JMenultem("Tools listed here");
a.addActionListener(this);
toolMenu.add(a);

JMenu helpMenu = new JMenu("Help");
a = new JMenultem("Show Help Files");
a.addActionListener(this);
helpMenu.add(a);
a = new JMenultem("About");
a.addActionListener(this);
helpMenu.add(a);

JMenuBar mBar = new JMenuBar();
mBar.add(fileMenu);
mBar.add(reportsMenu);
mBar.add(knowledgeMenu);
mBar.add(toolMenu);
mBar.add(helpMenu);
setJMenuBar(mBar);

}

//constructor for displaying the question and answer windows
public Questions(CTList 1)
{

list=l;
String[] questions= list.getCurrent();

num=0;
for(int i=0;i<15; i++){

if (questions[i]==null){
num=i;
break;

56

}
else num=15;

}

if(num==0) {
for(int i=15;i<25; i++){

if (questions[i]==null){
num=i;
break;

}
else num=25;

}
displaySolutions(questions);

}
else{

displayQuestions(questions);
}

}

//desplays a new question window
private void displayQuestions(String[] questions){

JPanel p = new JPanel(new SpringLayout());

JLabel q[] = new JLabel[num];
b = new JCheckBox[num][2];

p.add(new JLabel(" "));
p.add(new JLabel(" "));
p.add(new JLabel("Yes"));
p.add(new JLabel("No"));

for(int i=0; knum; i++){
JLabel number=new JLabel((i+1) + ". ");
p.add(number);

q[i]= new JLabel(questions[i]);
p.add(q[i]);

b[i][0]= new JCheckBox();
p.add(b[i][0]);

b[i][1]= new JCheckBox();
p.add(b[i][1]);

57

JButton subButton = new JButton("Submit");
subButton.addActionListener(this);
JLabel blankl = new JLabel(" ");
JLabel blank2 = new JLabel(" ");
JLabel blank3 = new JLabel(" ");

p.add(blankl);
p.add(subButton);
p.add(blank2);
p.add(blank3);

SpringUtilities.makeCompactGrid(p,
(num + 2), 4, //rows, cols
5, 5, //initialX, initialY
5, 5);//xPad, yPad

myWindow = new JFrame();

p.setOpaque(true);

myWindow.setContentPane(p);
myWindow.pack();

myWindow.setVisible(true);
}

//displays the solution list
private void displaySolutions(String[] solutions){

JPanel p = new JPanel(new SpringLayout());

JLabel q[] = new JLabel[num-15];

p.add(new JLabel(" "));
p.add(new JLabel("Solutions"));

for(int i=15; i<num; i++){
JLabel number=new JLabel((i-14) + ". ");
p.add(number);

58

q[i-15]= new JLabel(solutions[i]);
p.add(q[i-15]);

}

SpringUtilities.makeCompactGrid(p,
(num - 14), 2, //rows, cols
5, 5, llinitialX, initialY
5, 5);//xPad, yPad

myWindow = new JFrame();

p.setOpaque(true);

myWindow.setContentPane(p);
myWindow.packQ;

myWindow.setVisible(true);

//actionPerformed
public void actionPerformed (ActionEvent e){

Container content = getContentPane();

//Listener for the question windows
if (e.getActionCommand().equals("Submit"))
{

for(int i=0; i<num; i++){
if(b[i][0].isSelected()){

answers[i]=1;
}
else if(b[i][1].isSelected()){

answers[i]=0;
}

}

String[] junk = list.getNew(answers);
Questions window = new Questions(list);
myWindow.dispose();

}

//Listeners for the menu bar
else if (e.getActionCommandQ.equals("About"))

59

{
About window = new About();

}
else if (e. getActionCommand(). equals ("Reset"))
{

list.reset();
Questions window = new Questions(list);

}
else if (e.getActionCommand().equals("Logout"))
{

System.exit(0);
}
else if (e.getActionCommand().equals("Show Help Files"))
{

Help window = new Help();
}

//Default Listener
else
{

System.out.println("Error in button interface");
}

Wend Action Listener

60

}fiend class

Appendix B: CTList.java: The Jess Controller

Purpose:
Provides the Jess controller class for a computer troubleshooting expert system.

Constructor:
One constructor is provided that initializes the Jess rule engine and retrieves the
first list of questions for the user.

Public Methods:
getCurrent() - takes no input and returns the current list of questions.
getNext(int[]) - takes a list of zeros and ones that represent the answers given by

the user and returns the new list of questions.
reset() - resets the Jess rule engine.

61

62

import java.*;
import jess.*;
class CTList{

private static CTNodeList nl;
private static CTNode[] nodeArray;
private static String[] textArray;
private static int[] mapping;
private static boolean[] answers;
private static int solNum;
private static Rete engine;

public CTList(){
nl=new CTNodeList();
Value v;

try{
engine = new Rete();
engine.store("LIST", nl);
v=engine.executeCommand("(batch CTKnowledgeBase.c1p)");
engine.reset();
engine.run();

nodeArray=n1.getList();
}
catch(Exception e) { }

textArray=new String[25];
answers= new boolean[15];
mapping= new int[25];
for(int i=0;i<25;i++){

mapping[i]=-1;
}

int j=0;
solNum=O;
String type=null;
for(int i=0; i<25 && j<15 && solNum<10; i++){

type=nodeArray[i].getType();

if(type==null) {
break;

}
else if(type.equals("question")){

textArray[j]=nodeArray[i].getText();
answers[j]=nodeArray[i].getAnswer();
mapping[j]=i;
j++;

63

1
else{

textArray[15+solNum]=nodeArray[i].getText();
mapping[15+solNum]=i;
solNum++;

}

}

}

public String[] getCurrent(){
return textArray;

}

public String[] getNew(int[] a){
for(int i=0; i<15; i++){

if(mapping	 1) {
break;

}
else if((answers[i] && a[i]==1) II

(!answers[i] && a[i]==0)){
activate(mapping[i]);

}
}
cleanSolutions(a);
update();

return textArray;
}

private void activate(int i) {
try{

Value v= engine.executeCommand("(assert (domain " +
nodeArray[i].getName() + "))");

String[] triggers=nodeArray[i].getTrigger();
for(int j=0; j<triggers.length; j++){

v= engine.executeCommand("(assert (trigger " + triggers[j] + ")");
}

}
catch(Exception e) { }

}

private void update() {
try{

engine.store("LIST", nl);
Value v=engine.executeCommand("(bind ?*activelist* (fetch LIST))");

nl.clear();
engine.run();
nodeArray=n1.getList();

}
catch(Exception e) { }

for(int i=0;i<15;i++){
textArray[i]=null;
mapping[i]=-1;

}

int j=0;
solNum=O;
String type=null;
for(int i=0; i<25 && j<15 && solNum<10; i++){

type=nodeArray[i].getType();

if(type==null){
break;

}
else if(type.equals("question")){

textArray[j]=nodeArray[i].getText();
answers[j]=nodeArray[i].getAnswer();
mapping[j]=i;
j++;

}
else{

textArray[15+solNum]=nodeArray[i].getText();
mapping[15+solNum]=i;
solNum++;

}

}

}

private void cleanSolutions(int[] a){
int k=10;
for(int i=0;i<k; i++){

if(textArray[15+i] != null) {
break;

}
else if(a[15+i] != -1){

k--;
for(int j=0; j<k; j++){

textArray[15+j]=textArray[15+j+1];
a[15+j]=a[15+j+1];

64

solNum--;
}
textArray[15+k]=null;
a[15+k]=-1;
mapping[15+k].- ,
i--;

}

}

}
public void reset(){

try{
engine.store("LIST", nl);
Value v=engine.executeCommand("(bind ?*active_list* (fetch LIST))");

nl.clear();
engine.reset();
engine.run();
nodeArray=n1.getList();

}
catch(Exception e) { }

textArray=new String[25];
answers= new boolean[15];
mapping= new int[25];
for(int i=0;i<25;i++){

mapping[i]=-1;
}

int j=0;
solNum=O;
String type=null;
for(int i=0; i<25 && j<15 && solNum<10; i++){

type=nodeArray[i].getType();

if(type==null) {
break;

}
else if(type.equals("question")){

textArray[j]=nodeArray[i].getText();
answers[j]=nodeArray[i].getAnswer();
mapping[j]=i;
j++;

}
else{

textArray[15+solNum]=nodeArray[i].getText();
mapping[15+solNum]=i;

65

66

solNum++;
1

1
1

1

67

Appendix C: CTE:i3wledgeBase.clp: The t. ?e Base Batch File

Purpose:
Initializes the Jess Rule engine for the Computer Troubleshooting Expert System.

Initialization:
This batch file is executed when the system is initialized when the system is
started to load the rule into the Rete network, and otherwise initialize the rule-
based part of the system.

(defglobal ?*active_list* =(fetch LIST))

(deftemplate node "describes a subset of the problem domain"
(slot name)
(slot type)
(slot text)
(slot answer)
(slot link (default ""))
(multislot domain)
(multislot trigger))

(deffacts init "initial problem domain" (domain init))

(batch Nodes.clp)

(defrule ask_question
"takes submitted questions and executes method for adding to list"
(or (and (domain ?i)

(node (domain $')d&:(member$?i $?d))
(name ?name)
(type ?type)
(text ?text)
(answer ?answer)
(link ?link)
(trigger $?trigger)))

(and (trigger $?n)
(node (name ?name&:(member$?name $?n))

(type ?type)
(text ?text)
(answer ?answer)
(link '1 link)
(trigger $?trigger))))

=>
(call ?*active_list* add ?name ?type ?text ?answer ?link ?trigger))

68

Appendix D: Nodes.c -p: The Knowledge Base Batch File

Purpose:
Provides The domain specific knowledge for the Computer Troubleshooting
Expert System.

Initialization:
This batch file is executed when the system is initialized when the system is
started to load the nodes into the working memory.

Modification:
Each node should fill the slots in the following template definition:

(deftemplate node "describes a subset of the problem domain"
(slot name)
(slot type)
(slot text)
(slot answer)
(slot link (default ""))
(multislot domain)
(multislot trigger))

69

(deffacts knowledge_base "knowledge base"
,,,,,,,,,,,,,enter nodes between this comment and the next,,,,,,,,,,,,

(node (name cant_enter_win)
(type question)
(domain init)
(text "Can you get in to Windows?")
(answer FALSE))

(node (name video)
(type question)
(domain cant_enter_win)
(text "Is the screen image blank or unrecognisable?")
(answer TRUE))

(node (name no_post)
(type question)
(domain cant_enter_win)
(text "When you turn it on does it beep once?")
(answer FALSE))

(node (name shutdown)
(type question)
(domain cant_enter_win)
(text "Does the computer shut down on it's own?")
(answer TRUE))

(node (name startup_error)
(type question)
(domain cant_enter_win)
(text "Is there an error message?")
(answer TRUE))

(node (name lockup)
(type question)
(domain cant_enter_win)
(text "Is the system locking up?")
(answer TRUE))

(node (name power)
(type question)
(domain cant_enter_win)
(text "Is there a power issue?")
(answer TRUE))

(node (name no_video)

70

(type question)
(domain video)
(text "Is the screen black?")
(answer TRUE))

(node (name distorted_video)
(type question)
(domain video)
(text "Is the video distorted?")
(answer TRUE))

(node (name post_error)
(type question)
(domain startup_error)
(text "Are there errors before the Windows splash screen?")
(answer TRUE))

(node (name win_loading_error)
(type question)
(domain startup_error)
(text "Are there errors after the Windows splash screen?")
(answer TRUE))

(node (name post_lockup)
(type question)
(domain lockup)
(text "Does the system lockup before the Windows splash screen?")
(answer TRUE))

(node (name win_loading_lockup)
(type question)
(domain lockup)
(text "Does the system lockup after the Windows splash screen?")
(answer TRUE))

(node (name replace_vid)
(type solution)
(domain no_video, distorted_video)
(text "Replace the video card.")
(answer TRUE))

(node (name reset_cmos)
(type solution)
(domain post_error)
(text "Reset the CMOS.")
(answer TRUE))

71

(node (name ffr)
(type solution)
(domain win_loading_error)
(text "FDisk Format Reload.")
(answer TRUE))

(node (name rephdd)
(type solution)
(domain win_loading_error)
(text "Replace HDD.")
(answer TRUE))

(node (name chkdsk)
(type solution)
(domain win_loading_lockup)
(text "Run chkdsk /r in the recovery console.")
(answer TRUE))

,,,,,,,,,,,,,,,,enter nodes between this comment and the previous,,,,,,,,,,,,,,,
)

72

73

Ap_)endix E: CTNodeListjava: An Object for Passing the Active List

Purpose:
Provides a method for transporting all data pertaining to the list of activated nodes
from the Jess rule engine to the Jess controller object.

Constructor:
One constructor is provided that initializes the member variables.

Public Methods:
add - adds a node to the current list of those that have been activated.
clear - reinitializes the list
getList - returns the current list of active nodes.

74

public class CTNodeList{
private static CTNode[] list= new CTNode[25];
private static int count=0;
private static String oldName[]=new String[25];

public CTNodeList() {
for(int i=0; i<25; i++){

list[i]=new CTNode();
oldName[i]=null;

}

}
public void add(String name, String type, String text, boolean answer, String link,

String[] trigger) {

if(checkNew(name)) {
list[count].setName(name);
list[count].setType(type);
list[count].setText(text);
list[count].setAnswer(answer);
list[count].setLink(link);
list[count].setTrigger(trigger);
oldName[count]=name;
count++;

}
}
public void clear(){

for(int i=0; k25; i++){
list[i]=new CTNode();
oldName[i]=null;

}
count=0;

}
public CTNode[] getList(){

return list;
}

private boolean checkNew(String name){
boolean b=true;
for(int i=0; i<count;i++) {

if(oldName[i].equals(name)){
b=false;
break;

}
}
return b;

}

}

Appendix F: CTNodejava: An Object for Storing Node Data

Purpose:
Provides a system for encapsulating all the necessary data about an activated
node.

Constructor:
One constructor is provided that initializes the member variables.

Public Methods:
Set and get methods are available for the member variables.

75

class CTNode{
private String name, type, text, link;
private boolean answer;
private String[] trigger;

CTNode() {

name=null;
type=null;
text=null;
link=null;

}

public void setName(String n){
name=n;

}
public String getName(){

return name;
}

public void setType(String t){
type=t;

}
public String getType(){

return type;
}

public void setText(String Of
text=t;

}
public String getText(){

return text;
}

public void setLink(String 1){
link=l;

}
public String getLink(){

return link;
}

76

public void setAnswer(boolean a){
answer=a;

}
public boolean getAnswer(){

return answer;
}

public void setTrigger(String[] t){
trigger=t;

}
public String[] getTrigger(){

return trigger;
}

77

}

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88

